
Homework 1
Due September 16 by 10pm

Handout 3
CSCI 334: Spring 2018

Turn-In Instructions
For this assignment, create one separate source code file for each question (e.g., q1.c).

Supply a Makefile (30 points) with one rule per homework assignment. The naming convention for
targets should be the name of the source file without the .c extention. For example, q1.c should
compile to q1. You must also provide an all target so that your assignment can be compiled with
make all.

For full credit, be sure that your code compiles without emitting warnings even when using the -Wall
flag. Note that if you use your own computer to do this assignment, you should check your assignment
using a lab machine before submitting, since different compiler versions do not always behave the
same way. The final authority will be the lab environment.

Turn in your work using the Github repository assigned to you. The name of the Github repos-
itory will have the form cs334 hw1 <your user name>. For example, my repository would be
cs334 hw1 dbarowy. You should have received an invite to commit in the repository in your email. If
you did not receive this email, please contact me right away!

Honor code: You may collaborate with one or more people on this assignment, but you may not write
code together. All submitted work must be your own original work. If you work with a partner, please
submit a collaborators.txt file that includes their names.

This assignment is due on Thursday, September 16 by 10pm.

Unix Accounts

We will be working on the Unix lab computers throughout the semester. If you have not used these
machines before or don’t remember your password, please see Mary Bailey in TCL 312 to
obtain a password and verify that you can log in.
I encourage you to work in the Unix lab whenever you like, but also keep in mind that you can ssh to
our computers from anywhere on campus. For example, if your username is bcool, you can connect to
lohani on the command line by typing: ssh bcool@lohani.cs.williams.edu

Reading

1. (Required) Read “A Brief Introduction to C”.

Problems

Q1. (10 points) . Find the bug
The following program does not work properly. On my machine, 2 + 2 = -422205256! Try
running this program on your machine.

#include <stdio.h>

float answer;

int main() {
answer = 2 + 2;
printf("The answer is: %d\n");
return 0;

}

Fix the source code and submit as a file named p1.c. At the top of the file, in a comment, explain
why the buggy program misbehaves. Speculate as to why I got a value like -422205256. Your
answer should look like:

/*
* The program was buggy because ...

* I think you got -422205256 because ...

*
*/

Q2. (15 points) . Computing powers of e
In numerical computing, it is common to compute powers of e, especially when performing sta-
tistical calculations. For this reason, many languages have built-in functions to compute this,
including C.
Write a function that computes en, where n is an int parameter. Be sure to think about all values
of int. Your program should have a function definition that looks like:

double epow(int n) {
// your code

}

You may not use the built-in definition to solve this problem.
Call this function using the following definition for main:

int main(int argc, char **argv) {
if (argc != 2) {

printf("Usage: q2 <n>\n");
return 1;

}

// convert to integer
int n = atoi(argv[1]);

// compute eˆn
double e_n = epow(n);

// print
printf("eˆ%d = %f\n", n, e_n);

return 0;
}

You should be able to call your program on the command line and supply a value of n, like

$./q2 4
eˆ4 = 54.598150

You will need to import stdlib.h to use atoi. You may also use stdbool.h if you wish.

Q3. (10 points) . Miles to kilometers
Write a program that converts miles to kilometers. Round the output of all fractions to the
nearest tenth of a kilometer. The program should not accept negative numbers.
You should be able to call the program like:

$./q3 25.2
25.2 miles is 40.5 kilometers.

You will need to import stdlib.h in order to use the atof function.

Q4. (15 points) . Counting characters
Write a program that counts characters. After starting the program, the user should be able to
type (or paste) input into the program, and when they press the Enter key, the program will
print the character count and then prompt for more input. The program should quit when the
user presses Ctrl-D, which can be detected by checking for the EOF character. You should use
the getchar function to get characters from the keyboard buffer.
Here is a sample session

$./q4
enter input> The quick brown fox jumps over the lazy dog.[Enter key pressed]
44
enter input> This is a test of the emergency broadcast system.[Enter key pressed]
49
enter input> Neat.[Enter key pressed]
5
enter input> [CTRL-D pressed]
$

Q5. (15 points) . Average temperature difference
Write a program that prompts the user for n days worth of temperature readings (either in ◦F or
◦C, your choice), where n is a configurable parameter, and then computes the average tempera-
ture difference for those days. Note that the user should be allowed to enter fractional tempera-
tures like 35.5.
Your solution must utilize the following data type

struct day {
double high;
double low;

};

and the n responses must be stored in a struct day array of length n. All printed values must
be rounded to 2 decimal places. Your program should check to make sure that the user did not
mix up high and low values; if they did, the program should prompt them to fix it.
Here is a sample session. Note that we read n from the command line.

$./q5 3
Enter the low temperature for day 1 in F: 65
Enter the high temperature for day 1 in F: 89.3
Enter the low temperature for day 2 in F: 83.2
Enter the high temperature for day 2 in F: 60.1
ERROR: Your low of 83.20 F is higher than your high of 60.10 F! Try again.
Enter the low temperature for day 2 in F: 60.1
Enter the high temperature for day 2 in F: 83.2
Enter the low temperature for day 3 in F: 55.4
Enter the high temperature for day 3 in F: 80
The average temperature difference for the 3 days given was 24.00 F.
$

Q6. (5 points) . What does this line do?
The “happy birthday” program described in the “Strings” section of the reading “A Brief Introduc-
tion to C” has the following line of code after the fgets statement:

fname[strcspn(fname, "\n")] = ‘\0‘;

and it has similar lines after subsequent fgets statements.

(a) What does this line of code do? You should use the man pages or online documentation to
understand the strcspn function.

(b) Why do we need to call this function? What would happen if you left the line out?

Supply your answers in a text file called q6.txt.

Q7. (0 points) . Optional Feedback
How hard was this assignment on a scale of 1 to 5? (where 1 = “very easy” and 5 = “very hard”)
Do you have any additional comments or feedback that you would like me to know?
Please supply your answer as a feedback.txt file.

Q8. (1 point) . Bonus
Does the reading “A Brief Introduction to C” have any errors? One bonus point will be awarded
for every verified problem that you find and report.
Submit as a text file called errors.txt.

