Homework 4 Handout 6
Due Thursday, October 4 by 10pm CSCI 334: Spring 2018

Turn-In Instructions
For this assignment, create one IATEX file for the entire assignment called hw4.tex. Please also upload a
PDF called hw4.pdf. You may use the IXTEX template for the assignment which is in your starter repository.

Turn in your work using the Github repository assigned to you. The name of the Github repository will have
the form cs334hw4_<your user name>. For example, my repository would be cs334hw4_dbarowy. You
should have received an invite to commit in the repository in your email. If you did not receive this email,
please contact me right away!

Honor code: You may collaborate with one or more people on this assignment, but you may not write code
together. All submitted work must be your own original work. If you work with a partner, please submit a
collaborators.txt file that includes their names.

This assignment is due on Thursday, October 4 by 10pm.
Reading

1. (Required) “Introduction to the Lambda Calculus,” Parts 1 and 2

2. (Required) Concepts in Programming Languages, “Grammars and Parse Trees”

Problems

QL. (10 POINES) ..o Parse Tree

Draw the parse tree for the derivation of the expression “10-15+12" described in section 4.1.2 (bottom
of page, Mitchell p. 53). Is there another derivation for “10-15+12"7 Is there another parse tree?

Q2. (10 POINLS) oo Lambda Calculus Reduction
Use lambda calculus reduction to find a shorter expression for (Az.Ay.zy)(Azx.zy). Begin by renaming
bound variables. You should do all possible reductions to get the shortest possible expression. What
goes wrong if you do not rename bound variables?

Q3. (I5POINLS) oo Parsing and Precedence
Draw parse trees for the following expressions, assuming the grammar and precedence described in
Example 4.2 (Mitchell, p. 56):

(a) 1 +1 %1
(b) 1 +1 - 1.

(c) 1 -1+ 1 -1 =% 1 if+is given higher precedence than -.

QA. (30 POINLS) ..o Symbolic Evaluation

The Python program fragment

def f(x):
return x + 4

def g(y):
return 3 - y

£(g(1))

can be written as the following lambda expression:

(AfAg.f(g1) Qa(+x4) [(My.(=3y))

main f g

Reduce the expression to a normal form in two different ways, as described below.

(a) (5 points) Reduce the expression by choosing, at each step, the reduction that eliminates a A as
far to the left as possible.

(b) (5 points) Reduce the expression by choosing, at each step, the reduction that eliminates a A as
far to the right as possible.

(c) (5 points) In pure A-calculus, the order of evaluation of subexpressions does not affect the value of
an expression. However, that is not the case for a language with side effects like Python or Java.

i. Write a Python or Java instance method £ and expressions el and e2 for which evaluating
arguments left-to-right and right-to-left produces different results. (Hint: Recall that in
Python/Java, an instance method may refer to variables declared outside of the scope of the
function definition.)

ii. What evaluation order is used by Java or Python? (you choose the language you prefer)

Q5. (20 points) ..o Translation into Lambda Calculus

Q6.

A programmer is having difficulty debugging the following Python program. In theory, on an “ideal”
machine with infinite memory, this program would run forever. In practice, this program crashes
because it runs out of memory, since extra space is required every time a function call is made.

def f(g):
g(g

def mymain():
x = £(£)
print x

Explain the behavior of the program by translating the definition of £ into lambda calculus and then
reducing the application £(£). Note that an equivalent program in a statically typed language like Java
or ML would not compile.

(10 POINES) ..o Bonus: Lambda Reduction with Sugar

Lambda expressions can be made easier to understand by the use of “syntactic sugar.” Syntactic sugar
is additional syntax that simplifies readability while leaving the meaning (semantics) of a language
expression unchanged.

For example, here is a “sugared” lambda expression using some extra syntax known as a let declaration:

Q7.

Q8.

let foo= Az \y.(+ z y) in
foo23

The above expression may be “desugared” by replacing each let z = U in V with
(Az. V) U. First, we identify z, U, and V:

foo
Az \y.(+ z y)
foo23

z
U
v

which yields:

(Moo.(foo 2 3))(Az Ay.(+ = y)))

and after reducing this expression, the value 5.
(a) Desugar the following expression:

let compose = Af.\g. \x. f(gx) in
let h = Az.(+ z z) in
((composeh) h) 3

(b) Simplify the desugared lambda expression using reduction. Briefly explain why the simplified
expression is the answer you expected.

(0 POIMES) . oo e e e Optional Feedback
How hard was this assignment on a scale of 1 to 57 (where 1 = “very easy” and 5 = “very hard”)
Do you have any additional comments or feedback that you would like me to know?

Please supply your answer as a feedback.txt file.

(1 POME) e e e Bonus

Does the reading “Introduction to the Lambda Calculus, Part 2” have any errors? One bonus point
will be awarded for every verified problem that you find and report.

Submit as a text file called errors.txt.

