
Homework 9
Due Thursday, Nov 15 by 10pm

Turn-In Instructions
For text response questions, provide a LATEX source file and pre-built PDF. For full credit, your LATEX file
should build properly. Be sure to git add all necessary files (e.g., images) if your LATEX depends on it.

For each coding question in this assignment, create a project directory. You should be able to cd into
this directory and then run the program by typing the command “dotnet run”. Each program should be
split into two pieces: a “Program.fs” file that contains the main method and associated program-startup
routines (like argument parsers), and another “Library.fs” file that contains the function(s) of interest
in the question. All library code should be in a module named “CS334”. Be sure to provide usage output
(defined in main) for all programs that require arguments. For full credit, your program should both build
and run correctly.

Turn in your work using the Github repository assigned to you. The name of the Github repository will have
the form cs334hw9_<your user name>. For example, my repository would be cs334hw9_dbarowy. You
should have received an invite to commit in the repository in your email. If you did not receive this email,
please contact me right away!

A good way to check that you submitted your assignment correctly is to git clone your repository to a
new folder and then try building/running everything.

Pair Programming and Honor Code: You may optionally collaborate with one other person on the
submission for this assignment. If you work with a partner, choose one of the two partner repositories for
your submission. In the other repository, be sure to leave a collaborators.txt file that states who you
worked with and the name of the repository where the code may be found. If you would like me to pair you
with a partner, please let me know. You may not share code with any student who is not your designated
partner.

This assignment is due on Thursday, Nov 15 by 10pm.

Problems

Q1. (70 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Minimal Project Prototype
For this assignment, you will build a minimally working version of your language. Along the way, you
should also update your project specification.
A minimally working interpreter has the following components:

(a) A parser. Put your parser in a library file called ProjectParser.fs. The namespace for the
parser should also be called ProjectParser.

(b) An interpreter / evaluator. Put your interpreter in a library file called ProjectInterpreter.fs.
The namespace for the interpreter should also be called ProjectInterpreter.

(c) A driver program. The driver should contain a main method that takes input from the user,
parses and interprets it using the appropriate library calls, and displays the result. Put your main
method in a file called Program.fs. For example, if your project is an infix scientific calculator
(an expression-oriented language), it might accept input and return a result on the command line
as follows:

$ dotnet run "1 + 2"
3



You should think carefully about what constitutes a “primitive value” in your language. Primitive
values and operations on primitive values are good candidates for inclusion in a minimally working
interpreter because they are generally the easiest forms of data and operations to implement.
Another form of primitive operation, often used in statement-oriented languages like C, is referred to
as the “sequence operator”, and it’s what is meant by the semicolon in the the following C program
fragment:

1;
2;

which produces the following AST:

seq

1 seq

2 ε

where ε is shorthand for “no operation.” In any case, choose one operation that makes sense in your
langauge.

Minimally Working Interpreter

The following constitutes a “minimally working interpreter”:

(a) Your AST can represent at least one kind of data.
(b) Your AST can represent at least one operation.
(c) Your parser can recognize a program consisting of your one kind of data and your one operation

and it produces the appropriate AST.
(d) Your evaluator can evaluate your one operation using operands consisting of your data, and if

necessary, expressions consisting of your data and operation. In other words, it can recursively
evaluate subexpressions, where appropriate.

Minimal Formal Grammar

Additionally, you should update your specification with a formal definition of the minimal grammar.
For example, if our minimal working version is a scientific calculator that only supports addition, our
first pass on the grammar might be:

<expr> ::= <number><ws><op><ws><expr>
| <number>

<number> ::= <d><number>
| <d>

<d> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<op> ::= +
<ws> ::= ␣ | ε

Where ␣ denotes a space character and ε denotes the empty string. Note that we did not write the
following similar grammar.



<expr> ::= <expr><ws><op><ws><expr>
| <number>

<number> ::= <d><number>
| <d>

<d> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<op> ::= +
<ws> ::= ␣ | ε

The reason is that this latter grammar is what we call left recursive. In particular, the production
<expr><ws><op><ws><expr> is problematic for mechanical reasons: when we convert our BNF into
a program (a parser), it is possible to construct a program that recursively expands the left <expr>
infinitely without ever consuming any input. When using recursive descent parsers such a parser
combinators, we must be careful to ensure that recursive parsers always consume some input on each
step, otherwise, we run the very real danger of our parser getting stuck in an infinite loop. If your
grammar is left recursive, you should refactor it so that it is no longer left-recursive.

Since your grammar only has a single operation, precedence will not yet be an issue. However, you
will need to think about the associativity of your operator. Is it left or right associative? For instance,
addition is typically left associative, therefore the following expression

1 + 2 + 3

should produce the following AST

+

+

1 2

3

Be sure to explain your operator’s associativity in the next section.

Minimal Semantics

Finally, you should explain the semantics of your data and operators. For example, you might build
the following table.

Syntax Abstract Syntax Type Prec./Assoc. Meaning
n Number of int int n/a n is a primitive. We repre-

sent integers using the 32-
bit F# integer data type
(Int32).

e1 + e1 PlusOp of Expr * Expr int -> int -> int 1/left PlusOp evaluates e1 and e2,
adding their results, finally
yielding an integer. Both
e1 and e1 must evaluate
to int, otherwise the inter-
preter aborts the computa-
tion and alerts the user of
the error.



Deliverables

Supply your updated specification as a LATEX file and call it “q1.tex”. Also provide a PDF for your
LATEX.
The project directory for your minimally working interpreter should be called “q1”.

Q2. (30 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Beta Normal Form
This question asks you to write F# code that performs beta reduction on lambda calculus expressions.

Recall that beta reduction is the process of substituting a bound variable with a value “applied to”
a lambda abstraction. This form of substitution, when combined with alpha reduction from your
last assignment, is sufficient to carry out any computation that we can do in principle. Therefore,
investigating how beta reduction works, in a mechanical way, is helpful for understanding how one
might implement other features in a real programming language. For example, variable and function
definitions, function calls, and so on, can be implemeted as syntactic sugar on top of the lambda
calculus.

Your end goal is to write the following function, which reduces an arbitrary lambda expression to beta
normal form,

betanorm : e:Expr -> Expr

where e is a lambda expression, and the function returns an expression in beta normal form. In a beta
normalized expression, there is no more “work” left to do: all of the applications that have lambda
abstractions on their left sides have been beta reduced.

For example, given the following lambda calculus expression written in our expression language,

((Lx.x)y)

the betanorm function returns the expression y. The intuition is that betanorm “rewrites” an AST
representing the lambda calculus in much the same way a human would rewrite a lambda expression
on paper.

We use the same AST data types as in your parsing and alpha normalization assignments,

type Expr =
| Variable of char
| Abstraction of char * Expr
| Application of Expr * Expr

therefore, you should allow the user to input lambda expressions as plain text, using a parser. You
will be supplied with starter code for a complete lambda expression parser and an alpha reduction
implementation, but you may use your own code if you wish.
We will begin by decomposing this problem into a small set of helper functions in order to write the
betanorm function.

(a) Write the function

sub : v:char -> with_e:Expr -> in_e:Expr -> Expr



that performs a substitution where v is a variable bound in a lambda abstraction, with_e is an
argument being applied to a lambda abstraction, and in_e is the body of a lambda abstraction.
For example, given the expression,

((Lx.(xx))y)

the parts are labeled as follows:

Subexpression Name
x v
y with_e
(xx) in_e

and the result of calling sub with these arguments should be the expression (yy).

To be precise, the sub function carries out the substitution operation implied by the beta-
equivalence rule:

(λx.<expr>)y =β [y/x]<expr>

In other words, we eliminate the lambda abstraction by replacing every occurrence of v with
with_e in the expression in_e.

Note that, for simplicity, you may assume that the expression e is already in alpha-normal form.
Finally, sub should be recursive, continuing to replace v with_e in_e for as long as it makes
sense.

(b) Write the function

betastep : e:Expr -> Expr

that performs, at most, one step of beta reduction on the expression e.

The logic of the function should depend on the case of the e: Expr ADT.
• Variable v: Return e.
• Abstraction(v,e'): Perform one step of beta reduction on the expression e' and return a

new Abstraction of v and the one-step-beta-normalized e'.
• Application(e1, e2): The result depends on the type of e1.

– Variable: Perform one step of beta reduction to e2 and return a new Application, where
e1 is the left expression and the one-step-beta-normalized e2 is the right expression.

– Abstraction(e1v,e1e): Substitute e1v with e2 in e1e.
– Application: First try beta reducing e1. If e1 reducible, return a new Application,

where the one-step-beta-normalized e1 is the left expression and e2 is the right expression.
Otherwise, if e1 is not reducible, try beta reducing e2. If e2 is reducible, return a new
Application, where e1 is the left expression and the one-step-beta-normalized e2 is the
right expression. Otherwise, if neither expression can be reduced, return e.

A useful property of the lambda calculus is the identity

e = betastep e

where e is an expression in beta-normal form. In other words, beta reducing a beta-normalized
expression yields the original expression.



(c) Finally, write the function,

betanorm : e:Expr -> Expr

where e is a lambda expression, and the function returns an expression in beta-normal form.
betanorm should first alpha-normalize e to ensure that there are no name conflicts, and then it
should perform one step of beta normalization. If the result of one step of beta normalization is an
expression in beta normal form, then betanorm should return the expression, otherwise, it should
call itself recursively. In other words, betanorm performs as many steps of beta normalization as
are necessary to beta normalize the entire expression.

Here are some sample lambda expressions and their conversion to beta-normal form.

(Lx.x) (Lx.x)
(Lx.(Lx.x)) (Lx.(La.a))
(((Lx.x)(Lx.(xx)))(Lx.(xa))) (aa)
(((Lx.x)(Ly.(yy)))(Lz.(za))) (aa)
(((Lx.(xx))(Lx.(yx)))z) ((y(Lb.(yb)))z)
((Lx.((Ly.(xy))y))x) (xy)

(d) Be sure to document the above functions using XML comment blocks.
(e) The project directory for this question should be called “q2”. You should be able to run your

program on the command line by typing, for example, “dotnet run "(Lx.(Lx.x))"” and the
program’s output should be the beta-normalized expression pretty-printed using lambdaprint.

Q3. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bonus: Lambda Reduction Prover
Modify your beta reduction program to print step-by-step beta reduction proofs. Your program should
not print reduction proofs as a side effect. Instead, you should write a new top-level function reduce
: e:Expr -> (Expr*Reduction) list that generates a lambda reduction proof as a list of lambda
expressions. Reduction is a new ADT of your own design that explains the reduction carried out in each
step (e.g., informally, “Beta-reduce x with y in (yy)”). Note that, to produce the extra information
needed to support the reduce function, you will likely need to rewrite your alpha and beta reduction
functions.

Your top-level main function should then print out the proof. For example, given the expression
(((Lx.x)(Lx.(xx)))(Lx.(xa))), your main function should produce a proof that looks like:

(((Lx.x)(Lx.(xx)))(Lx.(xa))) | given
(((Lx.x)(Lb.(bb)))(Lc.(ca))) | alpha reduce x with b, x with c
((Lb.(bb))(Lc.(ca))) | beta reduce x with (Lb.(bb)) in x
((Lc.(ca))(Lc.(ca))) | beta reduce b with (Lc.(ca)) in (bb)
((Lc.(ca))(Lb.(ba))) | alpha reduce c with b
((Lb.(ba))a) | beta reduce c with (Lb.(ba)) in (ca)
(aa) | beta reduce b with a in (ba)
(aa) | done

For full credit, your proof needs to be neatly indented as shown above.

The project directory for this question should be called “q3”. You should be able to run your program
on the command line by typing, for example, “dotnet run "(Lx.(Lx.x))"” and the program’s output
should be a reduction proof like the one shown above.


