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Instructor: Dan Barowy

Lecture 3

Data types, values, and pointers
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(assignment had a typo)

(come see me if this typo bit you)



HW1: Don’t forget your Makefile HW1: Don’t forget your Makefile

(it’s worth 30 points)

Final Exam Study Guide
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git Tutorial

git clone

Retrieves repository from {Github, wherever}

git Tutorial

git add <file>

Adds a file (to your changelist).

git Tutorial

git commit -m <message>

Commits a changelist with a message.

git Tutorial

git rm <file>

Removes a file (from your changelist)



git Tutorial

git status

Displays the status of your changelist

git Tutorial

git diff
Displays the differences between your 

changelist and the last committed version

git Tutorial

git push

Uploads committed changes back to {Github, whatever}.

git Tutorial

git pull

Downloads latest commits to existing cloned repository.



git Tutorial

See reading on website for more info.

If you’re having trouble, come to office hours / TA hours.
Buffered I/O
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C Primitive Data Types

These are the “atoms” of all C programs.

All of these can be stored directly in a computer’s memory

at least 2 bytesint

float

double

char

#bytes not specified as long as IEEE 754

#bytes not specified as long as IEEE 754 double

smallest addressable unit that can contain ASCII

These may not have the representation that you expect!

May vary for different compiler, architecture, OS!

C Portable Integer Types
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C Portable Integer Types
If you need “portable” data types, see stdint.h 

int8_t 8-bit signed integer 

uint8_t 8-bit unsigned integer 

int16_t 16-bit signed integer 

uint16_t 16-bit unsigned integer 

int32_t 32-bit signed integer 

uint32_t 32-bit unsigned integer 

int64_t 64-bit signed integer 

uint64_t 64-bit unsigned integer 

Nice huh?  Everybody knows signed/unsigned, right?

For this class, ordinary primitives are fine.
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C Primitive Data Types

Byte widths are not the only portability concern!

(e.g., endianness)

Take CSCI 237 for more details.

(writing truly portable C is difficult!)
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Type Checking

If you ask C for storage of a given type, 
C gently asks that you be consistent.

int a; 
a = 3.2;

tc.c:3:7: warning: implicit conversion from 'double' to 'int' changes 
value from 3.2 to 3 [-Wliteral-conversion] 
  a = 3.2; 
    ~ ^~~ 
1 warning generated.

C is a weakly typed language, unlike Java.

C may warn you (like above), but if you really want to do it, it will let you.
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C Complex Data Types: Array

Amount of storage depends on type of value. 

0 1 25index

address

…a b zchar type

int type

0 1 25

0 1 25

…

index

address

0 1 25

0 4 100
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C Complex Data Types: Array

Reading:

int arr[10];

arr[3] (returns 4th element)

Writing:

arr[3] = 2; (assigns to 4th element)
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C Complex Data Types: Struct

A sequence of values, of heterogeneous type, stored contiguously

struct Account { 
  int account_no; 
  char *first_name; 
  char *last_name; 
  int balance; 
};

int char * char * int

The actual storage layout varies wildly! Do not assume anything!

} “fields”
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C Complex Data Types: Struct

struct Account my_account;

Reading:

my_account.account_no (returns account_no field)

Writing:

my_account.account_no = 12345678

(assigns to account_no field)
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Handy trick: typedef

typedef struct Account { 
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C Complex Data Types: Struct

Handy trick: typedef

typedef struct Account { 
  int account_no; 
  char *first_name; 
  char *last_name; 
  int balance; 
} Acc;

Acc my_account;

my_account.account_no = 12345678;

syntax: typedef <definition> <alias>;
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C Complex Data Types: Union

union never_do_this { 
  int account_no; 
  char *first_name; 
  char *last_name; 
  int balance; 
};

Unions are used for special purposes.

One value, stored in the same memory location

We will never use them in this class.

You should avoid them.

int

char *
or

C Complex Data Types Are Composable
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C Complex Data Types Are Composable

typedef struct Account { 
  int account_no; 
  char *first_name; 
  char *last_name; 
  int balance; 
} Acc; 

Acc arr[1000];

Perfectly valid and acceptable C:

C Complex Data Types Are Composable

typedef struct Account { 
  int account_no; 
  char *first_name; 
  char *last_name; 
  int balance; 
  struct birthday { 
    int year; 
    int month; 
    int day; 
  } 
} Acc;

Perfectly valid and acceptable C:

Pointers
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Pointers

What address does ptr point to?

int *ptr;

Right now it points at nothing.

ptr is a variable, just like any other variable.

Pointers Pointers

There are two important pointer operations.
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Pointers

There are two important pointer operations.

int i; 
int *ptr; 
ptr = &i;

1. We can get a pointer to a value.

What address does ptr point to?

& is the address of operator.
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Pointers

There are two important pointer operations.

int i; 
int *ptr; 
ptr = &i; 
int j = *ptr;

2. We can follow a pointer to a value.

What is j’s value?

Pointers

There are two important pointer operations.

int i; 
int *ptr; 
ptr = &i; 
int j = *ptr;

2. We can follow a pointer to a value.

What is j’s value?

* is the dereference operator.

Pointers

int i = 3; 
int *ptr; 
ptr = &i; 
int j = *ptr;

What is j’s value now?

Storage Duration
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Storage Duration

This can be a tad complex.

We will focus on two: automatic (now) and allocated (next class)

Storage Duration: Automatic

int i = 3;
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int i = 3;

C will automatically acquire (allocate) 
and release (deallocate) memory for this variable.

In reality, nearly every C implementation will store i on the call stack.
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int main() { 
  int i = 3; 
  return i; 
}
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main
i ← 3

#include <stdio.h> 

int main() { 
  int i = 3; 
  return i; 
}

Call stack

Storage Duration: Automatic

Where does i get returned?  How?

#include <stdio.h> 

int main() { 
  int i = 3; 
  return i; 
}

Call stack

Storage Duration: Automatic

main’s stack frame and all variables in it (i.e., i) are 
automatically deallocated when main goes out of scope.



#include <stdio.h> 

int add(int x, int y) { 
  int z = x + y; 
  return z; 
} 

int main() { 
  int x = 1; 
  int z = add(x, 3); 
  return z; 
}

Activity

Diagram the stack and variables when the program is at the three points.

1

2

3


