
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 3

Data types, values, and pointers

HW1: Due tonight by 10pm

HW1: Due tonight by 10pm

(assignment had a typo)

HW1: Due tonight by 10pm

(assignment had a typo)

(come see me if this typo bit you)

HW1: Don’t forget your Makefile HW1: Don’t forget your Makefile

(it’s worth 30 points)

Final Exam Study Guide

git Tutorial

git Tutorial

git clone

Retrieves repository from {Github, wherever}

git Tutorial

git add <file>

Adds a file (to your changelist).

git Tutorial

git commit -m <message>

Commits a changelist with a message.

git Tutorial

git rm <file>

Removes a file (from your changelist)

git Tutorial

git status

Displays the status of your changelist

git Tutorial

git diff
Displays the differences between your

changelist and the last committed version

git Tutorial

git push

Uploads committed changes back to {Github, whatever}.

git Tutorial

git pull

Downloads latest commits to existing cloned repository.

git Tutorial

See reading on website for more info.

If you’re having trouble, come to office hours / TA hours.
Buffered I/O

C Primitive Data Types C Primitive Data Types

These are the “atoms” of all C programs.

C Primitive Data Types

These are the “atoms” of all C programs.

All of these can be stored directly in a computer’s memory

C Primitive Data Types

These are the “atoms” of all C programs.

All of these can be stored directly in a computer’s memory

int

C Primitive Data Types

These are the “atoms” of all C programs.

All of these can be stored directly in a computer’s memory

int

float

C Primitive Data Types

These are the “atoms” of all C programs.

All of these can be stored directly in a computer’s memory

int

float

double

C Primitive Data Types

These are the “atoms” of all C programs.

All of these can be stored directly in a computer’s memory

int

float

double

char

C Primitive Data Types

These are the “atoms” of all C programs.

All of these can be stored directly in a computer’s memory

int

float

double

char

These may not have the representation that you expect!

C Primitive Data Types

These are the “atoms” of all C programs.

All of these can be stored directly in a computer’s memory

at least 2 bytesint

float

double

char

These may not have the representation that you expect!

C Primitive Data Types

These are the “atoms” of all C programs.

All of these can be stored directly in a computer’s memory

at least 2 bytesint

float

double

char

#bytes not specified as long as IEEE 754

These may not have the representation that you expect!

C Primitive Data Types

These are the “atoms” of all C programs.

All of these can be stored directly in a computer’s memory

at least 2 bytesint

float

double

char

#bytes not specified as long as IEEE 754

#bytes not specified as long as IEEE 754 double

These may not have the representation that you expect!

C Primitive Data Types

These are the “atoms” of all C programs.

All of these can be stored directly in a computer’s memory

at least 2 bytesint

float

double

char

#bytes not specified as long as IEEE 754

#bytes not specified as long as IEEE 754 double

smallest addressable unit that can contain ASCII

These may not have the representation that you expect!

C Primitive Data Types

These are the “atoms” of all C programs.

All of these can be stored directly in a computer’s memory

at least 2 bytesint

float

double

char

#bytes not specified as long as IEEE 754

#bytes not specified as long as IEEE 754 double

smallest addressable unit that can contain ASCII

These may not have the representation that you expect!

May vary for different compiler, architecture, OS!

C Portable Integer Types

C Portable Integer Types
If you need “portable” data types, see stdint.h

C Portable Integer Types
If you need “portable” data types, see stdint.h

int8_t 8-bit signed integer

C Portable Integer Types
If you need “portable” data types, see stdint.h

int8_t 8-bit signed integer

uint8_t 8-bit unsigned integer

C Portable Integer Types
If you need “portable” data types, see stdint.h

int8_t 8-bit signed integer

uint8_t 8-bit unsigned integer

int16_t 16-bit signed integer

C Portable Integer Types
If you need “portable” data types, see stdint.h

int8_t 8-bit signed integer

uint8_t 8-bit unsigned integer

int16_t 16-bit signed integer

uint16_t 16-bit unsigned integer

C Portable Integer Types
If you need “portable” data types, see stdint.h

int8_t 8-bit signed integer

uint8_t 8-bit unsigned integer

int16_t 16-bit signed integer

uint16_t 16-bit unsigned integer

int32_t 32-bit signed integer

C Portable Integer Types
If you need “portable” data types, see stdint.h

int8_t 8-bit signed integer

uint8_t 8-bit unsigned integer

int16_t 16-bit signed integer

uint16_t 16-bit unsigned integer

int32_t 32-bit signed integer

uint32_t 32-bit unsigned integer

C Portable Integer Types
If you need “portable” data types, see stdint.h

int8_t 8-bit signed integer

uint8_t 8-bit unsigned integer

int16_t 16-bit signed integer

uint16_t 16-bit unsigned integer

int32_t 32-bit signed integer

uint32_t 32-bit unsigned integer

int64_t 64-bit signed integer

C Portable Integer Types
If you need “portable” data types, see stdint.h

int8_t 8-bit signed integer

uint8_t 8-bit unsigned integer

int16_t 16-bit signed integer

uint16_t 16-bit unsigned integer

int32_t 32-bit signed integer

uint32_t 32-bit unsigned integer

int64_t 64-bit signed integer

uint64_t 64-bit unsigned integer

C Portable Integer Types
If you need “portable” data types, see stdint.h

int8_t 8-bit signed integer

uint8_t 8-bit unsigned integer

int16_t 16-bit signed integer

uint16_t 16-bit unsigned integer

int32_t 32-bit signed integer

uint32_t 32-bit unsigned integer

int64_t 64-bit signed integer

uint64_t 64-bit unsigned integer

Nice huh? Everybody knows signed/unsigned, right?

C Portable Integer Types
If you need “portable” data types, see stdint.h

int8_t 8-bit signed integer

uint8_t 8-bit unsigned integer

int16_t 16-bit signed integer

uint16_t 16-bit unsigned integer

int32_t 32-bit signed integer

uint32_t 32-bit unsigned integer

int64_t 64-bit signed integer

uint64_t 64-bit unsigned integer

Nice huh? Everybody knows signed/unsigned, right?

For this class, ordinary primitives are fine.

C Primitive Data Types

Byte widths are not the only portability concern!

(e.g., endianness)

C Primitive Data Types

Byte widths are not the only portability concern!

(e.g., endianness)

Take CSCI 237 for more details.

C Primitive Data Types

Byte widths are not the only portability concern!

(e.g., endianness)

Take CSCI 237 for more details.

(writing truly portable C is difficult!)

Type Checking Type Checking

If you ask C for storage of a given type,
C gently asks that you be consistent.

Type Checking

If you ask C for storage of a given type,
C gently asks that you be consistent.

int a;
a = 3.2;

Type Checking

If you ask C for storage of a given type,
C gently asks that you be consistent.

int a;
a = 3.2;

tc.c:3:7: warning: implicit conversion from 'double' to 'int' changes
value from 3.2 to 3 [-Wliteral-conversion]
 a = 3.2;
 ~ ^~~
1 warning generated.

Type Checking

If you ask C for storage of a given type,
C gently asks that you be consistent.

int a;
a = 3.2;

tc.c:3:7: warning: implicit conversion from 'double' to 'int' changes
value from 3.2 to 3 [-Wliteral-conversion]
 a = 3.2;
 ~ ^~~
1 warning generated.

C is a weakly typed language, unlike Java.

Type Checking

If you ask C for storage of a given type,
C gently asks that you be consistent.

int a;
a = 3.2;

tc.c:3:7: warning: implicit conversion from 'double' to 'int' changes
value from 3.2 to 3 [-Wliteral-conversion]
 a = 3.2;
 ~ ^~~
1 warning generated.

C is a weakly typed language, unlike Java.

C may warn you (like above), but if you really want to do it, it will let you.

C Complex Data Types: Array C Complex Data Types: Array

A sequence of values, stored contiguously

C Complex Data Types: Array

A sequence of values, stored contiguously

0 1 n-1

…

C Complex Data Types: Array

A sequence of values, stored contiguously

0 1 n-1

…

Any type of value can be used.

C Complex Data Types: Array

A sequence of values, stored contiguously

0 1 n-1

…

Any type of value can be used.

int arr[10];

C Complex Data Types: Array

A sequence of values, stored contiguously

0 1 n-1

…

Any type of value can be used.

int arr[10];

int * arr[10];

C Complex Data Types: Array

A sequence of values, stored contiguously

0 1 n-1

…

Any type of value can be used.

int arr[10];

int * arr[10];

struct point arr[10];

C Complex Data Types: Array

A sequence of values, stored contiguously

0 1 n-1

…

Any type of value can be used.

int arr[10];

int * arr[10];

struct point arr[10];

struct point * arr[10];

C Complex Data Types: Array C Complex Data Types: Array

Amount of storage depends on type of value.

C Complex Data Types: Array

Amount of storage depends on type of value.

char type

C Complex Data Types: Array

Amount of storage depends on type of value.

…a b zchar type

C Complex Data Types: Array

Amount of storage depends on type of value.

0 1 25index

…a b zchar type

C Complex Data Types: Array

Amount of storage depends on type of value.

0 1 25index

address

…a b zchar type

0 1 25

C Complex Data Types: Array

Amount of storage depends on type of value.

0 1 25index

address

…a b zchar type

int type

0 1 25

C Complex Data Types: Array

Amount of storage depends on type of value.

0 1 25index

address

…a b zchar type

int type

0 1 25

0 1 25

…

index

address

0 1 25

0 4 100

C Complex Data Types: Array C Complex Data Types: Array

int arr[10];

C Complex Data Types: Array

Reading:

int arr[10];

C Complex Data Types: Array

Reading:

int arr[10];

arr[3]

C Complex Data Types: Array

Reading:

int arr[10];

arr[3] (returns 4th element)

C Complex Data Types: Array

Reading:

int arr[10];

arr[3] (returns 4th element)

Writing:

C Complex Data Types: Array

Reading:

int arr[10];

arr[3] (returns 4th element)

Writing:

arr[3] = 2;

C Complex Data Types: Array

Reading:

int arr[10];

arr[3] (returns 4th element)

Writing:

arr[3] = 2; (assigns to 4th element)

C Complex Data Types: Struct C Complex Data Types: Struct

A sequence of values, of heterogeneous type, stored contiguously

C Complex Data Types: Struct

A sequence of values, of heterogeneous type, stored contiguously

struct Account {
 int account_no;
 char *first_name;
 char *last_name;
 int balance;
};

C Complex Data Types: Struct

A sequence of values, of heterogeneous type, stored contiguously

struct Account {
 int account_no;
 char *first_name;
 char *last_name;
 int balance;
};

int char * char * int

C Complex Data Types: Struct

A sequence of values, of heterogeneous type, stored contiguously

struct Account {
 int account_no;
 char *first_name;
 char *last_name;
 int balance;
};

int char * char * int

} “fields”

C Complex Data Types: Struct

A sequence of values, of heterogeneous type, stored contiguously

struct Account {
 int account_no;
 char *first_name;
 char *last_name;
 int balance;
};

int char * char * int

The actual storage layout varies wildly! Do not assume anything!

} “fields”

C Complex Data Types: Struct C Complex Data Types: Struct

struct Account my_account;

C Complex Data Types: Struct

struct Account my_account;

Reading:

C Complex Data Types: Struct

struct Account my_account;

Reading:

my_account.account_no

C Complex Data Types: Struct

struct Account my_account;

Reading:

my_account.account_no (returns account_no field)

C Complex Data Types: Struct

struct Account my_account;

Reading:

my_account.account_no (returns account_no field)

Writing:

C Complex Data Types: Struct

struct Account my_account;

Reading:

my_account.account_no (returns account_no field)

Writing:

my_account.account_no = 12345678

C Complex Data Types: Struct

struct Account my_account;

Reading:

my_account.account_no (returns account_no field)

Writing:

my_account.account_no = 12345678

(assigns to account_no field)

C Complex Data Types: Struct C Complex Data Types: Struct

Handy trick: typedef

C Complex Data Types: Struct

Handy trick: typedef

syntax: typedef <definition> <alias>;

C Complex Data Types: Struct

Handy trick: typedef

typedef struct Account {
 int account_no;
 char *first_name;
 char *last_name;
 int balance;
} Acc;

syntax: typedef <definition> <alias>;

C Complex Data Types: Struct

Handy trick: typedef

typedef struct Account {
 int account_no;
 char *first_name;
 char *last_name;
 int balance;
} Acc;

Acc my_account;

syntax: typedef <definition> <alias>;

C Complex Data Types: Struct

Handy trick: typedef

typedef struct Account {
 int account_no;
 char *first_name;
 char *last_name;
 int balance;
} Acc;

Acc my_account;

my_account.account_no = 12345678;

syntax: typedef <definition> <alias>;

C Complex Data Types: Union C Complex Data Types: Union

One value, stored in the same memory location

C Complex Data Types: Union

union never_do_this {
 int account_no;
 char *first_name;
 char *last_name;
 int balance;
};

One value, stored in the same memory location

C Complex Data Types: Union

union never_do_this {
 int account_no;
 char *first_name;
 char *last_name;
 int balance;
};

One value, stored in the same memory location

int

char *
or

C Complex Data Types: Union

union never_do_this {
 int account_no;
 char *first_name;
 char *last_name;
 int balance;
};

Unions are used for special purposes.

One value, stored in the same memory location

int

char *
or

C Complex Data Types: Union

union never_do_this {
 int account_no;
 char *first_name;
 char *last_name;
 int balance;
};

Unions are used for special purposes.

One value, stored in the same memory location

We will never use them in this class.

int

char *
or

C Complex Data Types: Union

union never_do_this {
 int account_no;
 char *first_name;
 char *last_name;
 int balance;
};

Unions are used for special purposes.

One value, stored in the same memory location

We will never use them in this class.

You should avoid them.

int

char *
or

C Complex Data Types Are Composable

C Complex Data Types Are Composable

Perfectly valid and acceptable C:

C Complex Data Types Are Composable

typedef struct Account {
 int account_no;
 char *first_name;
 char *last_name;
 int balance;
} Acc;

Acc arr[1000];

Perfectly valid and acceptable C:

C Complex Data Types Are Composable

typedef struct Account {
 int account_no;
 char *first_name;
 char *last_name;
 int balance;
 struct birthday {
 int year;
 int month;
 int day;
 }
} Acc;

Perfectly valid and acceptable C:

Pointers

Pointers

So simple they cause confusion.

Pointers

So simple they cause confusion.

A pointer is just an address.

Pointers

So simple they cause confusion.

A pointer is just an address.

int *ptr;

Pointers

So simple they cause confusion.

A pointer is just an address.

int *ptr;

The type tells you the type of the value at that address.

Pointers

So simple they cause confusion.

A pointer is just an address.

int *ptr;

The type tells you the type of the value at that address.

int

Pointers

Pointers

What address does ptr point to?

Pointers

What address does ptr point to?

int *ptr;

Pointers

What address does ptr point to?

int *ptr;

Right now it points at nothing.

Pointers

What address does ptr point to?

int *ptr;

Right now it points at nothing.

ptr is a variable, just like any other variable.

Pointers Pointers

There are two important pointer operations.

Pointers

There are two important pointer operations.

1. We can get a pointer to a value.

Pointers

There are two important pointer operations.

int i;
int *ptr;
ptr = &i;

1. We can get a pointer to a value.

Pointers

There are two important pointer operations.

int i;
int *ptr;
ptr = &i;

1. We can get a pointer to a value.

What address does ptr point to?

Pointers

There are two important pointer operations.

int i;
int *ptr;
ptr = &i;

1. We can get a pointer to a value.

What address does ptr point to?

& is the address of operator.

Pointers Pointers

There are two important pointer operations.

Pointers

There are two important pointer operations.

2. We can follow a pointer to a value.

Pointers

There are two important pointer operations.

int i;
int *ptr;
ptr = &i;
int j = *ptr;

2. We can follow a pointer to a value.

Pointers

There are two important pointer operations.

int i;
int *ptr;
ptr = &i;
int j = *ptr;

2. We can follow a pointer to a value.

What is j’s value?

Pointers

There are two important pointer operations.

int i;
int *ptr;
ptr = &i;
int j = *ptr;

2. We can follow a pointer to a value.

What is j’s value?

* is the dereference operator.

Pointers

int i = 3;
int *ptr;
ptr = &i;
int j = *ptr;

What is j’s value now?

Storage Duration

Storage Duration

This can be a tad complex.

Storage Duration

This can be a tad complex.

We will focus on two: automatic (now) and allocated (next class)

Storage Duration: Automatic

int i = 3;

Storage Duration: Automatic

i has automatic duration, because you didn’t specify anything.

int i = 3;

Storage Duration: Automatic

i has automatic duration, because you didn’t specify anything.

int i = 3;

C will automatically acquire (allocate)
and release (deallocate) memory for this variable.

Storage Duration: Automatic

i has automatic duration, because you didn’t specify anything.

int i = 3;

C will automatically acquire (allocate)
and release (deallocate) memory for this variable.

In reality, nearly every C implementation will store i on the call stack.

Storage Duration: Automatic

#include <stdio.h>

int main() {
 int i = 3;
 return i;
}

Call stack

Storage Duration: Automatic

#include <stdio.h>

int main() {
 int i = 3;
 return i;
}

Call stack

Storage Duration: Automatic

main
i

#include <stdio.h>

int main() {
 int i = 3;
 return i;
}

Call stack

Storage Duration: Automatic

main
i ← 3

#include <stdio.h>

int main() {
 int i = 3;
 return i;
}

Call stack

Storage Duration: Automatic

Where does i get returned? How?

#include <stdio.h>

int main() {
 int i = 3;
 return i;
}

Call stack

Storage Duration: Automatic

main’s stack frame and all variables in it (i.e., i) are
automatically deallocated when main goes out of scope.

#include <stdio.h>

int add(int x, int y) {
 int z = x + y;
 return z;
}

int main() {
 int x = 1;
 int z = add(x, 3);
 return z;
}

Activity

Diagram the stack and variables when the program is at the three points.

1

2

3

