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Memory and call-by-value semantics
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Grades are sent back, with feedback, 
as a “pull request” in Github.
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Resub Policy:

1. You have 5 to use as you wish (except the project), including the 
midterm exam.

2. You have 2 weeks from the time I hand back assignment to 
submit.

3. Resub must include original and updated solution.

4. Critically, it must explain, in plain English, what you did wrong, why 
you made the mistake, and how your new solution fixes the 
problem.  In short, you need to tell me what you learned from your 
mistake.

5. Commit to your repo, and then open an issue called 
“Resubmission”, and assign me to the issue.

6. You can earn back up to 50% of missing points.
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Feedback

2. Want: more time between lesson and hw due date. 

1. Suggestion: more C practice.

a. I hear you.

b. Be an active learner.

This is the path to excellence

Reading Responses
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Mental technique #2: motivation

Who do you want to be?

You cannot be excellent until you commit to a goal.

(Simone Biles)

You cannot commit to a goal unless you are motivated.
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Mental technique #2: motivation

Who do you want to be?

You cannot be excellent until you commit to a goal.

Why are you here?

(Simone Biles)

You cannot commit to a goal unless you are motivated.

Excellence requires deliberate practice.

Why do we need pointers? Why do we need pointers?
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1. “Any problem in computer science can be solved 
with another level of indirection.” —Butler Lampson

Why do we need pointers?

1. “Any problem in computer science can be solved 
with another level of indirection.” —Butler Lampson

2. They are necessary for building “persistent” data structures.
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This can be a tad complex.

We will focus on two: automatic and allocated
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i has automatic duration, because you didn’t specify anything.

int i = 3;

C will automatically acquire (allocate) 
and release (deallocate) memory for this variable.

In reality, nearly every C implementation will store i on the call stack.
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#include <stdio.h> 

int main() { 
  int i = 3; 
  return i; 
}

Call stack

Storage Duration: Automatic

Where does i get returned?  How?

#include <stdio.h> 

int main() { 
  int i = 3; 
  return i; 
}

Call stack

Storage Duration: Automatic

main’s stack frame and all variables in it (i.e., i) are 
automatically deallocated when main goes out of scope.

#include <stdio.h> 

int add(int x, int y) { 
  int z = x + y; 
  return z; 
} 

int main() { 
  int x = 1; 
  int z = add(x, 3); 
  return z; 
}

Activity

Diagram the stack and variables when the program is at the three points.

1

2

3
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Storage Duration: Allocated

To deallocate, you must call free

int *i = malloc(sizeof(int)); 
free(i);

You have to do this even if i goes out of scope!

Failing to free when you are done is a bug called a memory leak.

#include <stdio.h> 
#include <stdlib.h> 

int main() { 
  int i* = malloc(sizeof(int)); 
  *i = 3; 
  return i; 
}

Call stack
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Call stack

main
i

#include <stdio.h> 
#include <stdlib.h> 

int main() { 
  int i* = malloc(sizeof(int)); 
  *i = 3; 
  return i; 
}

3

Anyone see a problem?
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#include <stdio.h> 
#include <stdlib.h> 

int main() { 
  int i* = malloc(sizeof(int)); 
  *i = 3; 
  return i; 
}

3

3 is now unreachable, and we cannot reclaim it.  Memory leak.

Anyone see a problem?

Storage Duration: Allocated

Call stack

#include <stdio.h> 
#include <stdlib.h> 

int main() { 
  int i* = malloc(sizeof(int)); 
  *i = 3; 
  return i; 
}

3

3 is now unreachable, and we cannot reclaim it.  Memory leak.

Anyone see a problem?

How should we fix it?

Storage Duration: Allocated

#include <stdio.h> 

void add(int *x, int *y, int *z) { 
  *z = *x + *y; 
} 

int main() { 
  int x = 1; 
  int y = 3; 
  int z; 
  add(&x, &y, &z); 
  return z; 
}

Activity

Diagram the stack and variables when the program is at the three points.

1

2

3
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(program evaluation strategy)

Examples:

C
Java

Python

How does a function “obtain” a parameter value?

Call-by-value semantics: copying

#include <stdio.h> 

int add(int x, int y) { 
  int z = x + y; 
  return z; 
} 

int main() { 
  int x = 1; 
  int z = add(x, 3); 
  return z; 
}

Call stack
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int main() { 
  int x = 1; 
  int z = add(x, 3); 
  return z; 
}

Call-by-value



Call stack

main
x

#include <stdio.h> 

int add(int x, int y) { 
  int z = x + y; 
  return z; 
} 

int main() { 
  int x = 1; 
  int z = add(x, 3); 
  return z; 
}

z

Call-by-value

Call stack

main
x = 1

#include <stdio.h> 

int add(int x, int y) { 
  int z = x + y; 
  return z; 
} 

int main() { 
  int x = 1; 
  int z = add(x, 3); 
  return z; 
}

z

Call-by-value

Call stack

main
x = 1

#include <stdio.h> 

int add(int x, int y) { 
  int z = x + y; 
  return z; 
} 

int main() { 
  int x = 1; 
  int z = add(x, 3); 
  return z; 
}

z

Call-by-value

Call stack

main
x = 1

#include <stdio.h> 

int add(int x, int y) { 
  int z = x + y; 
  return z; 
} 

int main() { 
  int x = 1; 
  int z = add(x, 3); 
  return z; 
}

z

add
z

x = 1
y = 3
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Call stack

main
x = 1

#include <stdio.h> 

int add(int x, int y) { 
  int z = x + y; 
  return z; 
} 

int main() { 
  int x = 1; 
  int z = add(x, 3); 
  return z; 
}

z

add
z

x = 1
y = 3

Not the same x!

Call-by-value

Call stack
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main
x = 1

#include <stdio.h> 

int add(int x, int y) { 
  int z = x + y; 
  return z; 
} 

int main() { 
  int x = 1; 
  int z = add(x, 3); 
  return z; 
}

z

add
z = 4

x = 1
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Call stack

Call-by-value

main
x = 1

#include <stdio.h> 

int add(int x, int y) { 
  int z = x + y; 
  return z; 
} 

int main() { 
  int x = 1; 
  int z = add(x, 3); 
  return z; 
}

z

add
z = 4

x = 1
y = 3

Not the same z!

Call stack

Call-by-value

main
x = 1

#include <stdio.h> 

int add(int x, int y) { 
  int z = x + y; 
  return z; 
} 

int main() { 
  int x = 1; 
  int z = add(x, 3); 
  return z; 
}

z = 4



What can a function return? What can a function return?

What can a function return? What can a function return?



What can a function return? What can a function return?

What can a function return?
C String Trick

Ensuring null termination is not always easy.

char *memset(char *buf, char c, size_t len)

memset can make reasoning about C strings easier.

e.g.,

memset(&dst,’\0’,sizeof(dst))

Assuming that dst is an automatic buffer.


