
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 4

Memory and call-by-value semantics

HW3 will be posted soon

HW3 will be posted soon

HW1 solutions will be in my box by the end of the day.

HW1 grades are back

HW1 grades are back

Grades are sent back, with feedback,
as a “pull request” in Github.

0.0

0.3

0.6

0.9

Makefile Q1 Q2 Q3 Q4 Q5 Q6 Total

CS334 F18 HW1 grade distributionHW1 grade distribution

Resubmissions

Resub Policy:

Resub Policy:

1. You have 5 to use as you wish (except the project), including the
midterm exam.

Resub Policy:

1. You have 5 to use as you wish (except the project), including the
midterm exam.

2. You have 2 weeks from the time I hand back assignment to
submit.

Resub Policy:

1. You have 5 to use as you wish (except the project), including the
midterm exam.

2. You have 2 weeks from the time I hand back assignment to
submit.

3. Resub must include original and updated solution.

Resub Policy:

1. You have 5 to use as you wish (except the project), including the
midterm exam.

2. You have 2 weeks from the time I hand back assignment to
submit.

3. Resub must include original and updated solution.

4. Critically, it must explain, in plain English, what you did wrong, why
you made the mistake, and how your new solution fixes the
problem. In short, you need to tell me what you learned from your
mistake.

Resub Policy:

1. You have 5 to use as you wish (except the project), including the
midterm exam.

2. You have 2 weeks from the time I hand back assignment to
submit.

3. Resub must include original and updated solution.

4. Critically, it must explain, in plain English, what you did wrong, why
you made the mistake, and how your new solution fixes the
problem. In short, you need to tell me what you learned from your
mistake.

5. Commit to your repo, and then open an issue called
“Resubmission”, and assign me to the issue.

Resub Policy:

1. You have 5 to use as you wish (except the project), including the
midterm exam.

2. You have 2 weeks from the time I hand back assignment to
submit.

3. Resub must include original and updated solution.

4. Critically, it must explain, in plain English, what you did wrong, why
you made the mistake, and how your new solution fixes the
problem. In short, you need to tell me what you learned from your
mistake.

5. Commit to your repo, and then open an issue called
“Resubmission”, and assign me to the issue.

6. You can earn back up to 50% of missing points.

Feedback

Feedback

Feedback

1. Suggestion: more C practice.

Feedback

2. Want: more time between lesson and hw due date.

1. Suggestion: more C practice.

Feedback

2. Want: more time between lesson and hw due date.

1. Suggestion: more C practice.

a. I hear you.

Feedback

2. Want: more time between lesson and hw due date.

1. Suggestion: more C practice.

a. I hear you.

b. Be an active learner.

Feedback

2. Want: more time between lesson and hw due date.

1. Suggestion: more C practice.

a. I hear you.

b. Be an active learner.

This is the path to excellence

Reading Responses

Mental technique #2: motivation Mental technique #2: motivation

Who do you want to be?

Mental technique #2: motivation

Who do you want to be?

Mental technique #2: motivation

Who do you want to be?

(Simone Biles)

Mental technique #2: motivation

Who do you want to be?

You cannot be excellent until you commit to a goal.

(Simone Biles)

Mental technique #2: motivation

Who do you want to be?

You cannot be excellent until you commit to a goal.

(Simone Biles)

Excellence requires deliberate practice.

Mental technique #2: motivation

Who do you want to be?

You cannot be excellent until you commit to a goal.

(Simone Biles)

You cannot commit to a goal unless you are motivated.

Excellence requires deliberate practice.

Mental technique #2: motivation

Who do you want to be?

You cannot be excellent until you commit to a goal.

Why are you here?

(Simone Biles)

You cannot commit to a goal unless you are motivated.

Excellence requires deliberate practice.

Why do we need pointers? Why do we need pointers?

Why do we need pointers?

1. “Any problem in computer science can be solved
with another level of indirection.” —Butler Lampson

Why do we need pointers?

1. “Any problem in computer science can be solved
with another level of indirection.” —Butler Lampson

2. They are necessary for building “persistent” data structures.

Storage Duration Storage Duration

This can be a tad complex.

Storage Duration

This can be a tad complex.

We will focus on two: automatic and allocated

Storage Duration: Automatic

int i = 3;

Storage Duration: Automatic

i has automatic duration, because you didn’t specify anything.

int i = 3;

Storage Duration: Automatic

i has automatic duration, because you didn’t specify anything.

int i = 3;

C will automatically acquire (allocate)
and release (deallocate) memory for this variable.

Storage Duration: Automatic

i has automatic duration, because you didn’t specify anything.

int i = 3;

C will automatically acquire (allocate)
and release (deallocate) memory for this variable.

In reality, nearly every C implementation will store i on the call stack.

Storage Duration: Automatic

#include <stdio.h>

int main() {
 int i = 3;
 return i;
}

Call stack

Storage Duration: Automatic

main
i

#include <stdio.h>

int main() {
 int i = 3;
 return i;
}

Call stack

Storage Duration: Automatic

main
i ← 3

#include <stdio.h>

int main() {
 int i = 3;
 return i;
}

Call stack

Storage Duration: Automatic

Where does i get returned? How?

#include <stdio.h>

int main() {
 int i = 3;
 return i;
}

Call stack

Storage Duration: Automatic

main’s stack frame and all variables in it (i.e., i) are
automatically deallocated when main goes out of scope.

#include <stdio.h>

int add(int x, int y) {
 int z = x + y;
 return z;
}

int main() {
 int x = 1;
 int z = add(x, 3);
 return z;
}

Activity

Diagram the stack and variables when the program is at the three points.

1

2

3

Storage Duration: Allocated

Storage Duration: Allocated

int *i = malloc(sizeof(int));

Storage Duration: Allocated

i has allocated duration, because you used malloc.

int *i = malloc(sizeof(int));

Storage Duration: Allocated

i has allocated duration, because you used malloc.

int *i = malloc(sizeof(int));

C will manually allocate on request
and deallocate memory on request.

Storage Duration: Allocated

i has allocated duration, because you used malloc.

int *i = malloc(sizeof(int));

C will manually allocate on request
and deallocate memory on request.

In reality, nearly every C implementation will store i on the heap.

Storage Duration: Allocated Storage Duration: Allocated

To deallocate, you must call free

Storage Duration: Allocated

To deallocate, you must call free

int *i = malloc(sizeof(int));
free(i);

Storage Duration: Allocated

To deallocate, you must call free

int *i = malloc(sizeof(int));
free(i);

You have to do this even if i goes out of scope!

Storage Duration: Allocated

To deallocate, you must call free

int *i = malloc(sizeof(int));
free(i);

You have to do this even if i goes out of scope!

Failing to free when you are done is a bug called a memory leak.

#include <stdio.h>
#include <stdlib.h>

int main() {
 int i* = malloc(sizeof(int));
 *i = 3;
 return i;
}

Call stack

Storage Duration: Allocated

main
i

Call stack

main
i

#include <stdio.h>
#include <stdlib.h>

int main() {
 int i* = malloc(sizeof(int));
 *i = 3;
 return i;
}

Storage Duration: Allocated

Call stack

main
i

#include <stdio.h>
#include <stdlib.h>

int main() {
 int i* = malloc(sizeof(int));
 *i = 3;
 return i;
}

3

Storage Duration: Allocated

Call stack

main
i

#include <stdio.h>
#include <stdlib.h>

int main() {
 int i* = malloc(sizeof(int));
 *i = 3;
 return i;
}

3

Anyone see a problem?

Storage Duration: Allocated

Call stack

#include <stdio.h>
#include <stdlib.h>

int main() {
 int i* = malloc(sizeof(int));
 *i = 3;
 return i;
}

3

3 is now unreachable, and we cannot reclaim it. Memory leak.

Anyone see a problem?

Storage Duration: Allocated

Call stack

#include <stdio.h>
#include <stdlib.h>

int main() {
 int i* = malloc(sizeof(int));
 *i = 3;
 return i;
}

3

3 is now unreachable, and we cannot reclaim it. Memory leak.

Anyone see a problem?

How should we fix it?

Storage Duration: Allocated

#include <stdio.h>

void add(int *x, int *y, int *z) {
 *z = *x + *y;
}

int main() {
 int x = 1;
 int y = 3;
 int z;
 add(&x, &y, &z);
 return z;
}

Activity

Diagram the stack and variables when the program is at the three points.

1

2

3

Call-by-value Call-by-value

(program evaluation strategy)

Call-by-value

(program evaluation strategy)

Examples:

Call-by-value

(program evaluation strategy)

Examples:

C

Call-by-value

(program evaluation strategy)

Examples:

C
Java

Call-by-value

(program evaluation strategy)

Examples:

C
Java

Python

How does a function “obtain” a parameter value?

Call-by-value semantics: copying

#include <stdio.h>

int add(int x, int y) {
 int z = x + y;
 return z;
}

int main() {
 int x = 1;
 int z = add(x, 3);
 return z;
}

Call stack

#include <stdio.h>

int add(int x, int y) {
 int z = x + y;
 return z;
}

int main() {
 int x = 1;
 int z = add(x, 3);
 return z;
}

Call-by-value

Call stack

main
x

#include <stdio.h>

int add(int x, int y) {
 int z = x + y;
 return z;
}

int main() {
 int x = 1;
 int z = add(x, 3);
 return z;
}

z

Call-by-value

Call stack

main
x = 1

#include <stdio.h>

int add(int x, int y) {
 int z = x + y;
 return z;
}

int main() {
 int x = 1;
 int z = add(x, 3);
 return z;
}

z

Call-by-value

Call stack

main
x = 1

#include <stdio.h>

int add(int x, int y) {
 int z = x + y;
 return z;
}

int main() {
 int x = 1;
 int z = add(x, 3);
 return z;
}

z

Call-by-value

Call stack

main
x = 1

#include <stdio.h>

int add(int x, int y) {
 int z = x + y;
 return z;
}

int main() {
 int x = 1;
 int z = add(x, 3);
 return z;
}

z

add
z

x = 1
y = 3

Call-by-value

Call stack

main
x = 1

#include <stdio.h>

int add(int x, int y) {
 int z = x + y;
 return z;
}

int main() {
 int x = 1;
 int z = add(x, 3);
 return z;
}

z

add
z

x = 1
y = 3

Not the same x!

Call-by-value

Call stack

Call-by-value

main
x = 1

#include <stdio.h>

int add(int x, int y) {
 int z = x + y;
 return z;
}

int main() {
 int x = 1;
 int z = add(x, 3);
 return z;
}

z

add
z = 4

x = 1
y = 3

Call stack

Call-by-value

main
x = 1

#include <stdio.h>

int add(int x, int y) {
 int z = x + y;
 return z;
}

int main() {
 int x = 1;
 int z = add(x, 3);
 return z;
}

z

add
z = 4

x = 1
y = 3

Not the same z!

Call stack

Call-by-value

main
x = 1

#include <stdio.h>

int add(int x, int y) {
 int z = x + y;
 return z;
}

int main() {
 int x = 1;
 int z = add(x, 3);
 return z;
}

z = 4

What can a function return? What can a function return?

What can a function return? What can a function return?

What can a function return? What can a function return?

What can a function return?
C String Trick

Ensuring null termination is not always easy.

char *memset(char *buf, char c, size_t len)

memset can make reasoning about C strings easier.

e.g.,

memset(&dst,’\0’,sizeof(dst))

Assuming that dst is an automatic buffer.

