CSCl 334:
Principles of Programming Languages

Lecture 4
Memory and call-by-value semantics

Instructor: Dan Barowy
Williams

H\W3 will be posted soon

H\W/3 will be posted soon

H\W/1 solutions will be in my box by the end of the day.

H\W/1 grades are back

H\W1 grades are back

Grades are sent back, with feedback,

as a “‘pull request” in Github.

0.9-

0.6-

0.3~

00~

H\W/1 grade distribution

Tl &
ole
Q Q3

it

Q4 Qs

Resubmissions

Synthesis

nthesis
Antithesis,
Thesis

Resub Policy:

1

Resub Policy:

You have 5 to use as you wish (except the project), including the
midterm exam.

Resub Policy:

You have 5 to use as you wish (except the project), including the
midterm exam.

You have 2 weeks from the time | hand back assignment to
submit.

Resub Policy:

You have 5 to use as you wish (except the project), including the
midterm exam.

You have 2 weeks from the time | hand back assignment to
submit.

Resub must include original and updated solution.

Resub Policy:

You have 5 to use as you wish (except the project), including the
midterm exam.

You have 2 weeks from the time | hand back assignment to
submit.

Resub must include original and updated solution.

Critically, it must explain, in plain English, what you did wrong, why
you made the mistake, and how your new solution fixes the

problem. In short, you need to tell me what you learned from your
mistake.

Resub Policy:

You have 5 to use as you wish (except the project), including the
midterm exam.

You have 2 weeks from the time | hand back assignment to
submit.

Resub must include original and updated solution.

Critically, it must explain, in plain English, what you did wrong, why
you made the mistake, and how your new solution fixes the

problem. In short, you need to tell me what you learned from your
mistake.

Commit to your repo, and then open an issue called
"Resubmission’, and assign me to the issue.

Resub Policy:

You have 5 to use as you wish (except the project), including the
midterm exam.

You have 2 weeks from the time | hand back assignment to
submit.

Resub must include original and updated solution.

Critically, it must explain, in plain English, what you did wrong, why
you made the mistake, and how your new solution fixes the

problem. In short, you need to tell me what you learned from your
mistake.

Commit to your repo, and then open an issue called
‘Resubmission’, and assign me to the issue.

You can earn back up to 50% of missing points.

Feedback

Feedback

Feedback

1. Suggestion: more C practice

Feedback

1. Suggestion: more C practice.

2. Want: more time between lesson and hw due date.

Feedback

1. Suggestion: more C practice.

2. Want: more time between lesson and hw due date.

a. | hear you.

Feedback

1. Suggestion: more C practice

2. Want: more time between lesson and hw due date.
a. | hear you.

b. Be an active learner.

Feedback

1. Suggestion: more C practice.

2. Want: more time between lesson and hw due date.

a. | hear you.

b. Be an active learner.

b\.d This is the path to excellence

Reading Responses

Mental technique #2: motivation

Mental technique #2: motivation

Who do you want to be?

Mental technique #2: motivation Mental technique #2: motivation

Who do you want to be? Who do you want to be?

(Simone Biles)

Mental technique #2: motivation Mental technique #2: motivation

Who do you want to be? Who do you want to be?

(Simone Biles) (Simone Biles)

You cannot be excellent until you commit to a goal. You cannot be excellent until you commit to a goal.
Excellence requires deliberate practice.

Mental technique #2: motivation

Who do you want to be?

(Simone Biles)

You cannot be excellent until you commit to a goal.
Excellence requires deliberate practice.

You cannot commit to a goal unless you are motivated.

Mental technique #2: motivation

Who do you want to be?

(Simone Biles)

You cannot be excellent until you commit to a goal.
Excellence requires deliberate practice.
You cannot commit to a goal unless you are motivated.

Why are you here?

Why do we need pointers?

Why do we need pointers?

Why do we need pointers?

1. "Any problem in computer science can be solved
with another level of indirection.” —Butler Lampson

Why do we need pointers?

1. "Any problem in computer science can be solved
with another level of indirection.” —Butler Lampson

2. They are necessary for building “persistent” data structures.

Storage Duration

Storage Duration

This can be a tad complex.

Storage Duration

This can be a tad complex.

e will focus on two: automatic and allocated

Storage Duration: Automatic

Storage Duration: Automatic

int 1 = 3;

Storage Duration: Automatic

int 1 = 3;

i has automatic duration, because you didn't specify anything.

Storage Duration: Automatic

int 1 = 3;

i has automatic duration, because you didn't specify anything.

C will automatically acquire (allocate)
and release (deallocate) memory for this variable.

Storage Duration: Automatic
int 1 = 3;

i has automatic duration, because you didn't specify anything.

C will automatically acquire (allocate)
and release (deallocate) memory for this variable.

In reality, nearly every C implementation will store 1 on the call stack.

Storage Duration: Automatic

#include <stdio.h>

int main() {
int 1 = 3;
return i;

main }

Call stack

Storage Duration: Automatic

#include <stdio.h>

int main() {
int 1 = 3;
. i 3 — return 1i;
main }
Call stack

Storage Duration: Automatic

#include <stdio.h>

int main() {
int 1 = 3;
return i;
e

Call stack

Where does i get returned? How?

Storage Duration: Automatic

#include <stdio.h>

int main () {
int 1 = 3;
return 1i;
e

Call stack

main’s stack frame and all variables in it (i.e., i) are
automatically deallocated when main goes out of scope.

Activity

#include <stdio.h>

int add(int x, int y) {
int z = x + y;
2 —> return z;
}

int main() {
1 —> int x = 1;
int z = add(x, 3);

3 —> return z;
}

Diagram the stack and variables when the program is at the three points.

Storage Duration: Allocated

Storage Duration: Allocated

int *i = malloc(sizeof (int));

Storage Duration: Allocated
int *i = malloc(sizeof (int));

i has allocated duration, because you used malloc.

Storage Duration: Allocated

int *i = malloc(sizeof (int));

i has allocated duration, because you used malloc.

C will manually allocate on request
and deallocate memory on request.

Storage Duration: Allocated

int *i = malloc(sizeof (int));

i has allocated duration, because you used malloc.

C will manually allocate on request
and deallocate memory on request.

In reality, nearly every C implementation will store i on the heap.

Storage Duration: Allocated Storage Duration: Allocated

To deallocate, you must call free

Storage Duration: Allocated Storage Duration: Allocated

To deallocate, you must call free To deallocate, you must call free
int *i = malloc(sizeof (int)); int *i = malloc(sizeof (int));
free (i) ; free (i) ;

You have to do this even if 1 goes out of scope!

Storage Duration: Allocated

To deallocate, you must call free

int *i = malloc(sizeof (int));
free(i);

You have to do this even if i goes out of scope!

Storage Duration: Allocated

#include <stdio.h>
#include <stdlib.h>

int main () {
—_— int i* = malloc(sizeof (int));

*i = 3;

main return i;
}
Failing to free when you are done is a bug called a memory leak.
Call stack

Storage Duration: Allocated Storage Duration: Allocated
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
int main() { int main() {

int i* = malloc(sizeof (int)); int i* = malloc(sizeof (int));
5 —> *i = 3; *i = 3;
main return 1i; main

}

Call stack

—_— return 1i;
}

Call stack

Storage Duration: Allocated

#include <stdio.h>
#include <stdlib.h>

int main() {
int i* = malloc(sizeof (int));
i *1i = 3;
main — return i;

}

Call stack
Anyone see a problem?

Storage Duration: Allocated

#include <stdio.h>
#include <stdlib.h>

int main () {
int i* = malloc(sizeof (int));
*i 3;
return 1i;

— }

Call stack
Anyone see a problem?

3 is now unreachable, and we cannot reclaim it. Memory leak.

Storage Duration: Allocated

#include <stdio.h>
#include <stdlib.h>

int main() {
int i* = malloc(sizeof (int));
*1 = 3;
return 1i;

— }

Call stack
Anyone see a problem?

3 is now unreachable, and we cannot reclaim it. Memory leak.

How should we fix it?

Activity

#include <stdio.h>

void add(int *x, int *y, int *z) {

*y = *x + *y;
i
int main () {
int x = 1;
int v = 3;

1 —> int z;
add (&x, &y, &z);

3 —> return z;
}

Diagram the stack and variables when the program is at the three points.

Call-by-value

Call-by-value

(program evaluation strategy)

Call-by-value

(program evaluation strategy)

Examples:

Call-by-value

(program evaluation strategy)

Examples:
C

Call-by-value
(program evaluation strategy)
Examples:

C
Java

Call-by-value

(program evaluation strategy)

Examples:
C

Java
Python

#include <stdio.h>

int add(int x, int y) {
int z = x + y;
return z;

return z;

}

How does a function “obtain” a parameter value?

Call-by-value semantics: copying

Call-by-value

#include <stdio.h>

int add(int x, int vy)
int z = x + y;
return z;

}

int x

—Pp int main() {
int z =

1;
add (x, 3);

return z;

Call stack }

{

Call-by-value

#include <stdio.h>

int add(int x, int vy)
int z = x + y;

{

Call-by-value

#include <stdio.h>

int add(int x, int vy)
int z = x + y;

return z; return z;
} }
% int main() { % 1 int main() {
main e int x = 1; main int x = 1;
z int z = add(x, 3); z —_— int z = add(x, 3);
return z; return z;
Call stack } Call stack }
Call-by-value Call-by-value
#include <stdio.h> #include <stdio.h>
—» int add(int x, int y) { int add(int x, int vy)
int z = x + y; —_ int z = x + y;
b4 1
return z; return z;
add % 3
} Z }
x = 1 int main() { % 1 int main() {
main int x = 1; main int x = 1;
Z int z = add(x, 3); Z int z = add(x, 3);
return z; return z;
Call stack } Call stack }

Call-by-value

Not the same x!

#include <stdio.h>

int add(int x, int vy)

{

Call-by-value

#include <stdio.h>

int add(int x, int vy)

F-¢ — int z = x + y; int z = x + y;
® 1 return z; x =1 —_— return z;
add % 3 ! add y =3 !
z } z = 4 }
x = 1K int main() { x = 1 int main() {
main int x = 1; main int x = 1;
z int z = add(x, 3); z int z = add(x, 3);
return z; return z;
Call stack } Call stack }
Call-by-value Call-by-value
Not the same z!
#include <stdio.h> #include <stdio.h>
int add(int x, int y) { int add(int x, int vy)
_ 1 int z = x + y; int z = x + y;
add ; ; 3 — return z; return z;
z = 4 })
x = 1 int main() { x = 1 int main() {
main int x = 1; main int x = 1;
z int z = add(x, 3); z =4 int z = add(x, 3);

return z;

Call stack }

—_— return z;
Call stack }

\What can a function return?

A home that can be yours
if you make $45 a week!

2-BEDROOM 4-BEDROOM
$350 down $550 down
‘approximately $37.00 2 month | approximately $39.50 a month
ool prc appronmaty | ttl e agponmaey
621
including $800 lot including $800 fot MO A MITER ANERICA
ool g
70 BE BUILT IN MANY COMMUNITIES SOON ... ot
WATCH YOUR LOCAL NEWSPAPER FOR ANNOUNCEMENT | iuroa, wones corroration
jrotingiseadrtaned

What can a function return?

A home that can be yours
if you make $45 a week!

2.BE0RO0M 4-BEDROOM

$350 down $550 down
‘approximately $37.00 & month | approximately $39.50 a month
o prce approsimatey | ot i agponmately
$6200
inclcin 3900t inclting $800 ot
eyl i
70 BE BUILT IN MANY COMMUNITIES SOON .. et
WATCH YOUR LOCAL NEWSPAPER FOR ANNOUNCEMENT | urona, wones corroration
ot e

What can a function return?

4-BEDROOM
$550 down

sppronimately $39.50 3 nonh
otal pice spproximtely

2BEOROOM
$350 down

spprosimatly $37.00 3 month
total rce spproximately

including $800 kot including $800 lot AETTER HOMES BUHD A BETTER AMIRICA
Pt el

70 BE BUILT IN MANY COMMUNITIES SOON ... A
WATCH YOUR LOCAL NEWSPAPER FOR ANNOUNCEMENT | iurona, wones comroramion
jrotniseadtd

What can a function return?

4-BEDROOM
$550 down
sppronimatey $39.50 3 ot
ot pie spproinatly
$6200

2.BEDROOM
350 down

approsimatly $37.00 3 month
ot pricespproimately

$5600
ncuding $800 ot incuding $800 ot METER WS WD A MTTER ANEHIGA
T0 BE BULLT IN MANY COMMUNITIES SOON .. . e .J.

WATCH YOUR LOCAL NEWSPAPER FOR ANNOUNCEMENT | \i\rionat womes corPoraTion
LANEIE moa HORREADS. N

What can a function return?

What can a function return?

be yours
a week!

2.BEDROOM
$350 down

appronimately $37.00 ot
total pr

v _'_ "'1‘
mmmmm g W

=

T0 BE BUILT IN MANY COMMUNITIES SOON . . . T0 BE BUILT IN MANY COMMUNITIES SOON .. =~
WATCH YOUR LOCAL NEWSPAPER FOR ANNOUNCEMENT

WATCH YOUR LOCAL NEWSPAPER FOR ANNOUNCEME!

C String Trick

Ensuring null termination is not always easy.
memset can make reasoning about C strings easier.

char *memset (char *buf, char c, size t len)

e.g.,

memset (&dst, ' \0’,sizeof (dst))

UNITIES SOON
PER FOR ANNOL

Assuming that dst is an automatic buffer.

