CSCl 334:
Principles of Programming Languages

Lecture 4
Memory and call-by-value semantics

Instructor: Dan Barowy
Williams
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H\W/1 solutions will be in my box by the end of the day.
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Grades are sent back, with feedback,

as a “‘pull request” in Github.
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Resub Policy:

You have 5 to use as you wish (except the project), including the
midterm exam.

You have 2 weeks from the time | hand back assignment to
submit.

Resub must include original and updated solution.

Critically, it must explain, in plain English, what you did wrong, why
you made the mistake, and how your new solution fixes the

problem. In short, you need to tell me what you learned from your
mistake.

Commit to your repo, and then open an issue called
‘Resubmission’, and assign me to the issue.

You can earn back up to 50% of missing points.
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Feedback

1. Suggestion: more C practice.

2. Want: more time between lesson and hw due date.

a. | hear you.

b. Be an active learner.

b\.d This is the path to excellence

Reading Responses

Mental technique #2: motivation
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Mental technique #2: motivation

Who do you want to be?

(Simone Biles)

You cannot be excellent until you commit to a goal.
Excellence requires deliberate practice.
You cannot commit to a goal unless you are motivated.

Why are you here?

Why do we need pointers?

Why do we need pointers?




Why do we need pointers?

1. "Any problem in computer science can be solved
with another level of indirection.” —Butler Lampson

Why do we need pointers?

1. "Any problem in computer science can be solved
with another level of indirection.” —Butler Lampson

2. They are necessary for building “persistent” data structures.
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i has automatic duration, because you didn't specify anything.
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int 1 = 3;

i has automatic duration, because you didn't specify anything.

C will automatically acquire (allocate)
and release (deallocate) memory for this variable.

In reality, nearly every C implementation will store 1 on the call stack.
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#include <stdio.h>

int main() {
int 1 = 3;
return i;
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Storage Duration: Automatic

#include <stdio.h>

int main() {
int 1 = 3;
return i;
e

Call stack

Where does i get returned? How?

Storage Duration: Automatic

#include <stdio.h>

int main () {
int 1 = 3;
return 1i;
e

Call stack

main’s stack frame and all variables in it (i.e., i) are
automatically deallocated when main goes out of scope.

Activity

#include <stdio.h>

int add(int x, int y) {
int z = x + y;
2 —> return z;
}

int main() {
1 —> int x = 1;
int z = add(x, 3);

3 —> return z;
}

Diagram the stack and variables when the program is at the three points.
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int *i = malloc(sizeof (int));

i has allocated duration, because you used malloc.

C will manually allocate on request
and deallocate memory on request.

In reality, nearly every C implementation will store i on the heap.
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Storage Duration: Allocated

To deallocate, you must call free

int *i = malloc(sizeof (int));
free(i);

You have to do this even if i goes out of scope!

Storage Duration: Allocated

#include <stdio.h>
#include <stdlib.h>

int main () {
—_— int i* = malloc(sizeof (int));

*i = 3;

main return i;
}
Failing to free when you are done is a bug called a memory leak.
Call stack

Storage Duration: Allocated Storage Duration: Allocated
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
int main() { int main() {

int i* = malloc(sizeof (int)); int i* = malloc(sizeof (int));
5 —>  *i = 3; *i = 3;
main return 1i; main

}

Call stack

—_— return 1i;
}

Call stack




Storage Duration: Allocated

#include <stdio.h>
#include <stdlib.h>

int main() {
int i* = malloc(sizeof (int));
i *1i = 3;
main — return i;

}

Call stack
Anyone see a problem?

Storage Duration: Allocated

#include <stdio.h>
#include <stdlib.h>

int main () {
int i* = malloc(sizeof (int));
*i 3;
return 1i;

— }

Call stack
Anyone see a problem?

3 is now unreachable, and we cannot reclaim it. Memory leak.

Storage Duration: Allocated

#include <stdio.h>
#include <stdlib.h>

int main() {
int i* = malloc(sizeof (int));
*1 = 3;
return 1i;

— }

Call stack
Anyone see a problem?

3 is now unreachable, and we cannot reclaim it. Memory leak.

How should we fix it?

Activity

#include <stdio.h>

void add(int *x, int *y, int *z) {

*y = *x + *y;
i
int main () {
int x = 1;
int v = 3;

1 —> int z;
add (&x, &y, &z);

3 —> return z;
}

Diagram the stack and variables when the program is at the three points.
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Call-by-value
(program evaluation strategy)
Examples:
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Java

Call-by-value

(program evaluation strategy)

Examples:
C

Java
Python

#include <stdio.h>

int add(int x, int y) {
int z = x + y;
return z;

return z;

}

How does a function “obtain” a parameter value?

Call-by-value semantics: copying

Call-by-value

#include <stdio.h>

int add(int x, int vy)
int z = x + y;
return z;

}

int x

—Pp int main() {
int z =

1;
add (x, 3);

return z;

Call stack }

{




Call-by-value

#include <stdio.h>

int add(int x, int vy)
int z = x + y;

{

Call-by-value

#include <stdio.h>

int add(int x, int vy)
int z = x + y;

return z; return z;
} }
% int main() { % 1 int main() {
main e int x = 1; main int x = 1;
z int z = add(x, 3); z —_— int z = add(x, 3);
return z; return z;
Call stack } Call stack }
Call-by-value Call-by-value
#include <stdio.h> #include <stdio.h>
—» int add(int x, int y) { int add(int x, int vy)
int z = x + y; —_ int z = x + y;
b4 1
return z; return z;
add % 3
} Z }
x = 1 int main() { % 1 int main() {
main int x = 1; main int x = 1;
Z int z = add(x, 3); Z int z = add(x, 3);
return z; return z;
Call stack } Call stack }




Call-by-value

Not the same x!

#include <stdio.h>

int add(int x, int vy)

{

Call-by-value

#include <stdio.h>

int add(int x, int vy)

F-¢ — int z = x + y; int z = x + y;
® 1 return z; x =1 —_— return z;
add % 3 ! add y =3 !
z } z = 4 }
x = 1K int main() { x = 1 int main() {
main int x = 1; main int x = 1;
z int z = add(x, 3); z int z = add(x, 3);
return z; return z;
Call stack } Call stack }
Call-by-value Call-by-value
Not the same z!
#include <stdio.h> #include <stdio.h>
int add(int x, int y) { int add(int x, int vy)
_ 1 int z = x + y; int z = x + y;
add ; ; 3 — return z; return z;
z = 4 } )
x = 1 int main() { x = 1 int main() {
main int x = 1; main int x = 1;
z int z = add(x, 3); z =4 int z = add(x, 3);

return z;

Call stack }

—_— return z;
Call stack }
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What can a function return?

4-BEDROOM
$550 down
sppronimatey $39.50 3 ot
ot pie spproinatly
$6200
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What can a function return?

be yours
a week!

2.BEDROOM
$350 down
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T0 BE BUILT IN MANY COMMUNITIES SOON . . . T0 BE BUILT IN MANY COMMUNITIES SOON .. =~
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WATCH YOUR LOCAL NEWSPAPER FOR ANNOUNCEME!

C String Trick

Ensuring null termination is not always easy.
memset can make reasoning about C strings easier.

char *memset (char *buf, char c, size t len)

e.g.,

memset (&dst, ' \0’,sizeof (dst))

UNITIES SOON
PER FOR ANNOL

Assuming that dst is an automatic buffer.




