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Activity

Write a function swap that 
swaps the values of x and y.

#include <stdio.h> 

void swap(int *a, int *b) { 
  ??? 
} 

int main() { 
  int x = 1; 
  int y = 2; 
  swap(&x, &y); 
  printf("x = %d, y = %d\n", x, y); 
  return 0; 
}

Start by drawing a picture of what you want.

Lambda calculus grammar

<expr>  ::= <var> 

         |  <abs>  
         |  <app> 

<var>   ::= x  
<abs>   ::= λ<var>.<expr> 

<app>   ::= <expr><expr>

What is a variable?

<var>   ::= x

What is a variable?

<var>   ::= x

It’s just a value.
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What is an application?

<app>   ::= <expr><expr>

It’s a “function call”

foo(2)
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function

What is an application?

<app>   ::= <expr><expr>

It’s a “function call”

foo(2)
<expr><expr>

argumentfunction

#include <stdio.h> 

void hello() { 
  printf(“Hello world!\n”); 
} 

int main() { 
  hello(); 
  return 0; 
}

Call stack

main

hello

Evaluation: You know how C does it Evaluation: Lambda calculus is like algebra

(λx.x)x 



Evaluation: Lambda calculus is like algebra

(λx.x)x 

Evaluation consists of simplifying an 
expression using text substitution.

Evaluation: Lambda calculus is like algebra

(λx.x)x 

Evaluation consists of simplifying an 
expression using text substitution.

Only two simplification rules:

Evaluation: Lambda calculus is like algebra

(λx.x)x 

Evaluation consists of simplifying an 
expression using text substitution.

Only two simplification rules:

α-reduction

Evaluation: Lambda calculus is like algebra

(λx.x)x 

Evaluation consists of simplifying an 
expression using text substitution.

Only two simplification rules:

α-reduction

β-reduction



Ambiguity Ambiguity

If we generate expr, what do we get?

Ambiguity Ambiguity

This is not what we started with!
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Axiom of equivalence for parens

<expr> = (<expr>)

Let’s modify our grammar
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Also…

<expr>   ::= <value> 

          |  <abs>  
          |  <app> 

          |  <parens> 

<var>    ::= α ∈ { a ... z }  
<abs>    ::= λ<var>.<expr> 

<app>    ::= <expr><expr> 

<parens> ::= (<expr>) 

<value>  ::= v ∈ ℕ 

          |  <var>

This expression is now unambiguous

(λx.x)x 

Free vs bound variables

(λx.x)x 

Free vs bound variables

(λx.x)x 

bound
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α-Reduction

(λx.x)x 

This expression has two different x variables

Which should we rename?

Rule:

λx.<expr> =α λy.[y/x]<expr>

[y/x] means “substitute y for x in <expr>”

α-Reduction

(λx.x)x 



α-Reduction
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(λy.[y/x]x)x 

α-Reduction

(λx.x)x 

(λy.[y/x]x)x 

(λy.y)x 

β-Reduction
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β-Reduction

(λx.x)y 

How we “call” or apply a function to an 
argument

Rule:

β-Reduction

(λx.x)y 

How we “call” or apply a function to an 
argument

Rule:

(λx.<expr>)y =β [y/x]<expr>

Reduce this

(λx.x)x 

How far do we go?
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How far do we go?

x 

We keep going until there is nothing left to do

(λx.xy)z 

xx 

λx.y 

That “most simplified” expression is called a 
normal form.
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M

M1 M2

N

Sometimes multiple simplifications
Order (mostly) does not matter

If M → M1 and M → M2 

then M1 →* N and M2 →* N  

for some N

M

M1 M2

N “confluence”

Sometimes multiple simplifications

Example

(λf.λx.f(fx))(λy.y)2


