
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 6: PL Fundamentals II

Announcements

Announcements

HW4 posted

Announcements

HW4 posted

Wednesday Office Hours

Recursive Data Structures Recursive Data Structures

You learned these in CS136.

Recursive Data Structures

You learned these in CS136.

Let’s talk about the list node in HW3.

Recursive Data Structures

You learned these in CS136.

Let’s talk about the list node in HW3.

Recursive Data Structures

You learned these in CS136.

Let’s talk about the list node in HW3.

Activity

Activity

Write a function swap that
swaps the values of x and y.

Activity

Write a function swap that
swaps the values of x and y.

Start by drawing a picture of what you want.

Activity

Write a function swap that
swaps the values of x and y.

#include <stdio.h>

void swap(int *a, int *b) {
 ???
}

int main() {
 int x = 1;
 int y = 2;
 swap(&x, &y);
 printf("x = %d, y = %d\n", x, y);
 return 0;
}

Start by drawing a picture of what you want.

Lambda calculus grammar

<expr> ::= <var>

 | <abs>  
 | <app>

<var> ::= x  
<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

What is a variable?

<var> ::= x

What is a variable?

<var> ::= x

It’s just a value.

What is an abstraction?

<abs> ::= λ<var>.<expr>

What is an abstraction?

<abs> ::= λ<var>.<expr>

It’s a function definition

What is an abstraction?

<abs> ::= λ<var>.<expr>

It’s a function definition

def foo(x):

What is an abstraction?

<abs> ::= λ<var>.<expr>

It’s a function definition

def foo(x):

 <expr>

What is an application?

<app> ::= <expr><expr>

What is an application?

<app> ::= <expr><expr>

It’s a “function call”

What is an application?

<app> ::= <expr><expr>

It’s a “function call”

foo(2)

What is an application?

<app> ::= <expr><expr>

It’s a “function call”

foo(2)
<expr><expr>

What is an application?

<app> ::= <expr><expr>

It’s a “function call”

foo(2)
<expr><expr>

function

What is an application?

<app> ::= <expr><expr>

It’s a “function call”

foo(2)
<expr><expr>

argumentfunction

#include <stdio.h>

void hello() {
 printf(“Hello world!\n”);
}

int main() {
 hello();
 return 0;
}

Call stack

main

hello

Evaluation: You know how C does it Evaluation: Lambda calculus is like algebra

(λx.x)x

Evaluation: Lambda calculus is like algebra

(λx.x)x

Evaluation consists of simplifying an
expression using text substitution.

Evaluation: Lambda calculus is like algebra

(λx.x)x

Evaluation consists of simplifying an
expression using text substitution.

Only two simplification rules:

Evaluation: Lambda calculus is like algebra

(λx.x)x

Evaluation consists of simplifying an
expression using text substitution.

Only two simplification rules:

α-reduction

Evaluation: Lambda calculus is like algebra

(λx.x)x

Evaluation consists of simplifying an
expression using text substitution.

Only two simplification rules:

α-reduction

β-reduction

Ambiguity Ambiguity

If we generate expr, what do we get?

Ambiguity Ambiguity

This is not what we started with!

Parentheses disambiguate grammar Parentheses disambiguate grammar

<expr> = (<expr>)

Parentheses disambiguate grammar

Axiom of equivalence for parens

<expr> = (<expr>)

Parentheses disambiguate grammar

Axiom of equivalence for parens

<expr> = (<expr>)

Let’s modify our grammar

Lambda calculus grammar

<expr> ::= <var>

 | <abs>  
 | <app>

 | <parens>

<var> ::= x  
<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

<parens> ::= (<expr>)

While we’re at it…

While we’re at it…

<expr> ::= <var>

While we’re at it…

<expr> ::= <var>

 | <abs>  
 | <app>

While we’re at it…

<expr> ::= <var>

 | <abs>  
 | <app>

 | <parens>

While we’re at it…

<expr> ::= <var>

 | <abs>  
 | <app>

 | <parens>

<var> ::= α ∈ { a ... z }  
<abs> ::= λ<var>.<expr>

While we’re at it…

<expr> ::= <var>

 | <abs>  
 | <app>

 | <parens>

<var> ::= α ∈ { a ... z }  
<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

While we’re at it…

<expr> ::= <var>

 | <abs>  
 | <app>

 | <parens>

<var> ::= α ∈ { a ... z }  
<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

<parens> ::= (<expr>)

Also…

<expr> ::= <value>

 | <abs>  
 | <app>

 | <parens>

<var> ::= α ∈ { a ... z }  
<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>

<parens> ::= (<expr>)

<value> ::= v ∈ ℕ

 | <var>

This expression is now unambiguous

(λx.x)x

Free vs bound variables

(λx.x)x

Free vs bound variables

(λx.x)x

bound

Free vs bound variables

(λx.x)x

freebound

α-Reduction

(λx.x)x

α-Reduction

(λx.x)x

This expression has two different x variables

α-Reduction

(λx.x)x

This expression has two different x variables

Which should we rename?

α-Reduction

(λx.x)x

This expression has two different x variables

Which should we rename?

Rule:

α-Reduction

(λx.x)x

This expression has two different x variables

Which should we rename?

Rule:

λx.<expr> =α λy.[y/x]<expr>

α-Reduction

(λx.x)x

This expression has two different x variables

Which should we rename?

Rule:

λx.<expr> =α λy.[y/x]<expr>

[y/x] means “substitute y for x in <expr>”

α-Reduction

(λx.x)x

α-Reduction

(λx.x)x

(λy.[y/x]x)x

α-Reduction

(λx.x)x

(λy.[y/x]x)x

(λy.y)x

β-Reduction

(λx.x)y

β-Reduction

(λx.x)y

How we “call” or apply a function to an
argument

β-Reduction

(λx.x)y

How we “call” or apply a function to an
argument

Rule:

β-Reduction

(λx.x)y

How we “call” or apply a function to an
argument

Rule:

(λx.<expr>)y =β [y/x]<expr>

Reduce this

(λx.x)x

How far do we go?

How far do we go?

We keep going until there is nothing left to do

How far do we go?

x

We keep going until there is nothing left to do

How far do we go?

x

We keep going until there is nothing left to do

done

How far do we go?

x

We keep going until there is nothing left to do

xx

done

How far do we go?

x

We keep going until there is nothing left to do

xx

done

done

How far do we go?

x

We keep going until there is nothing left to do

xx

λx.y

done

done

How far do we go?

x

We keep going until there is nothing left to do

xx

λx.y

done

done

done

How far do we go?

x

We keep going until there is nothing left to do

(λx.xy)z

xx

λx.y

done

done

done

How far do we go?

x

We keep going until there is nothing left to do

(λx.xy)z

xx

λx.y

done

done

done

not done

How far do we go?

x

We keep going until there is nothing left to do

(λx.xy)z

xx

λx.y

That “most simplified” expression is called a
normal form.

done

done

done

not done

Order (mostly) does not matter

Sometimes multiple simplifications

Order (mostly) does not matter

If M → M1 and M → M2

then M1 →* N and M2 →* N

for some N

Sometimes multiple simplifications

Order (mostly) does not matter

If M → M1 and M → M2

then M1 →* N and M2 →* N

for some N

M

M1 M2

N

Sometimes multiple simplifications
Order (mostly) does not matter

If M → M1 and M → M2

then M1 →* N and M2 →* N

for some N

M

M1 M2

N “confluence”

Sometimes multiple simplifications

Example

(λf.λx.f(fx))(λy.y)2

