
CSCI 334: 
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 7: PL Fundamentals III

Announcements

Resubmission procedure

Wednesday Office Hours now 
3pm-5pm 

(originally: 10am-noon)

(If these hours still don’t work 
for you, make an appointment)

Mental Technique #3

Confusion is not necessarily a bad thing.

Mental Technique #3

https://www.npr.org/sections/13.7/2015/12/14/459651340/sometimes-confusion-is-a-good-thing

Sometimes Confusion is a Good Thing
Tania Lombrozo
NPR, December 14, 2015

“Students who were confused … as reflected in inconsistent 
responses on subsequent questions … ultimately did better on 
a final test assessing whether they learned the key points from 
the lessons.”



Mental Technique #3

https://www.npr.org/sections/13.7/2015/12/14/459651340/sometimes-confusion-is-a-good-thing

“One possibility is that confusion is … a marker that an 
important cognitive process has taken place: The learner has 
appreciated some inconsistency or deficit in her prior beliefs. 
… [A]nother possibility is that confusion is itself a step 
toward learning — an experience that motivates the learner to 
reconcile an inconsistency or remedy some deficit. In this 
view, confusion isn't just a side effect of beneficial cognitive 
processes, but a beneficial process itself. Supporting this 
stronger view, there's evidence that experiencing difficulties in 
learning can sometimes be desirable, leading to deeper 
processing and better long-term memory.”

Sometimes Confusion is a Good Thing
Tania Lombrozo
NPR, December 14, 2015

Mental Technique #3

“Focusing on important questions puts us in the 
awkward position of being ignorant. One of the 
beautiful things about science is that it allows us 
to bumble along, getting it wrong time after 
time, and feel perfectly fine as long as we learn 
something each time. No doubt, this can be 
difficult for students who are accustomed to 
getting the answers right.”

The importance of stupidity in scientific research
Martin A. Schwartz
Journal of Cell Science 2008 121: 1771 doi: 10.1242/jcs.033340

Mental Technique #3

Confusion is not necessarily a bad thing.

It is a signal that you are not 
confident in your knowledge.

Use this signal to guide your study.

Parse Trees

There are at least two forms of trees 
that we might refer to “parse trees”



Derivation Tree

1+2+3

e ::= n | e+e | e-e
n ::= d | nd
d ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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Describes exactly how input was parsed

Abstract Syntax Tree
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Abstracts over representation details

e ::= n | e+e | e-e
n ::= d | nd
d ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

1+2+3

Solution to reduction in reading prompt

Anyone want to give this a try on the board?

(λa.λb.(- a b)) 2 1  

Activity

(λf.λx.f(f x))(λz.(+ x z))2

Normal order reduction:



Activity

(λf.λx.f(f x))(λz.(+ x z))2

Applicative order reduction:

Computability

Computability

i.e., what can and cannot 
be done with a computer

def: a function f is computable if there 
is a program P that computes f.

In other words, for any (valid) input x, the 
computation P(x) halts with output f(x).

example

P(x) is: 
f(x) = x + 5

valid inputs are integers

computable?
yes.

Computability



example

P(x) is: 
f(x) = 5/x

valid inputs are integers

computable?
yes, partially.

Computability

f: A→B is a subset f ⊆ A×B subject to

Total Function

1. for every a∈A, there is a b∈B with ⟨a,b⟩∈f totality

single valued2. if  ⟨a,b⟩∈f and ⟨a,c⟩∈f then b=c

e.g, 
f(x) = x + 5

f: A→B is a subset f ⊆ A×B subject to

Partial Function

1. for every a∈A, there is a b∈B with ⟨a,b⟩∈f totality

single valued2. if  ⟨a,b⟩∈f and ⟨a,c⟩∈f then b=c

e.g, 
f(x) = 5/x

Activity



The Halting Problem

Decide whether program P halts on input x.

Given program P and input x,

Halt(P,x) = { returns true if P(x) halts

returns false otherwise

How might this work?
Clarifications:

P(x) is the output of program P run on input x.
The type of x does not matter; assume string.

The Halting Problem

Decide whether program P halts on input x.

How might this work?

Fact: it is provably impossible to write Halt

Given program P and input x,

Halt(P,x) = { returns true if P(x) halts

returns false otherwise

The Halting Problem

Notes on the proof:

The form of the proof is reductio ad absurdum.

Literally: “reduction to absurdity”.

Start with axioms and presuppose the 
outcome we want to show.

Then, following strict rules of logic, derive 
new facts.

Finally, derive a fact that contradicts another 
fact.

Therefore, the presupposition must be false.

The Halting Problem

Notes on the proof:

The proof relies on the kind of substitution 
principle that we’ve been using to “compute” 
functions in the lambda calculus.

Remember: we are looking to produce a 
contradiction.

The proof is hard to “understand” because the 
facts it derives don’t actually make sense. Don’t 
read too deeply.



The Halting Problem: Proof

Suppose:

Halt(P,x) = { returns true if P(x) halts

returns false otherwise

Construct:

DNH(P) = { if Halt(P,P) is true, while(1){}

returns false otherwise

{Halt always 
halts!

{
DNH 

does not 
always halt!

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if Halt(P,P) halts. 
DNH(P) will halt if Halt(P,P) runs forever.

Rewrite:

DNH(P) = { if Halt(P,P) is true, while(1){}

returns false otherwise

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if Halt(P,P) halts. 
DNH(P) will halt if Halt(P,P) runs forever.

Rewrite:

DNH(P) = { if P(P) halts, run forever

halt

The Halting Problem: Proof

Observations so far:

DNH(P) will run forever if P(P) halts. 
DNH(P) will halt if P(P) runs forever.

Rewrite:

DNH(P) = { if P(P) halts, run forever

halt



The Halting Problem

Isn’t DNH itself a program?

What happens if we call DNH(DNH)?

DNH(DNH) will run forever if DNH(DNH) halts. 
DNH(DNH) will halt if DNH(DNH) runs forever.

This literally makes no sense.

Foo is true if Foo is false. 
Foo is false if Foo is true.

Therefore, the Halt function cannot exist.

Next class:

How we can use the Halting Problem to show that 
other problems cannot be solved (in general) by 
“reduction” to the Halting Problem.

We cannot tell, in general…

… if a program will run forever.

… if a program eventually produces an error.

… if a program will re-read an item in memory.


