
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 9: Lisp

Announcements

Midterm exam next Thursday

Optional Lisp homework posted later today

Feedback: slides insufficient (clarification?)

Choosing a language

Many good technical reasons

Few people decide for technical reasons

John McCarthy

IBM 704 Lisp was invented for AI research

704 Assembly (circa 1954)
(From Coding the MIT-IBM 704 Computer)

FORTRAN (circa 1956)
(From NASA Technical Note D-1737)

LISP (circa 1958)

(defun fact (n)
 (cond ((eq n 0) 1)
 (t (* n (fact (- n 1))))))

LISP is a “functional” language

• programs are modeled after math. functions

• no statements, only expressions

• no “mutable” variables, only declarations

• therefore, the effect of running a program

(“evaluation”) is purely the effect of applying a

function to an input.

What does this mean?

• there is no hidden state (globals in C) or state-

change rules (as in Java).

• complex parts are composed out of simple

parts

• we care about what a program means and not

what it does: you can understand a program

without having to mentally execute it

• programs are easier to reason about

functional language (again)

• programs are modeled after math. functions

• no statements, only expressions

• no “mutable” variables, only declarations

• therefore, the effect of running a program

(“evaluation”) is purely the effect of applying a

function to an input.

LISP is a “functional” language

(defun add-one (n) (+ n 1))

3

4

+1

LISP is a “functional” language

(defun cleaning-robot (dirt) …)

dirty house

clean house

www

Big functions are “composed”
of little functions

(defun cleaning-robot (dirt) …)

www

dirty house

clean house

Program correctness is easier to achieve

www

I.e., whole is correct if pieces are correct.

clean house

dirty house

LISP is inspired by the lambda calculus

• everything either a value or a funct. of a value

value: 1

function of two values: (+ 1 1)

• syntax is (mind-numbingly) regular

functions: (function-name arguments …)

values: anything that is not a function

• evaluating a function produces a value: 

(+ 1 1) ↠ 2

Statements vs. expressions

• A statement is an operation that changes the

state of the computer

Java: i++

value stored at location i incremented by one

• An expression is a combination of functions and

values that yields a new value

Lisp: (+ i 1)

evaluating + with i and 1 returns i + 1

REPL
(read-eval-print loop)

Batch mode

Mutable variables

• If you can update a variable, your language has

mutable variables

Java: int i = 3;  
 i = 4;

• Notice that both lines of code are statements

• (pure) Lisp does not have mutable variables

Immutable variables

• Variables cannot be updated in Lisp

Lisp: (defun my-func (i) …)  
 (my-func 3)

or the shorter 
 ((lambda (i) …) 3)

• Notice that all of the above are expressions

• In fact, functions are the only way to bind

values to names in (pure) Lisp

Lisp syntax: atoms

• An atom is the most basic unit in Lisp: data

4

112.75

“hello”

‘foo

t

nil

Lisp syntax: cons cells

• cons cells are the basic unit of composition in

Lisp (recall C composes data with struct).

(cons “hello” 4)

“hello” 4

Lisp = LISt Processor

Lisp syntax: lists

• E.g., lists in Lisp are just made out of cons cells

(cons 1 (cons 2 (cons 3 nil)))  
 
 
 

• Lisp has a shorthand for this:

 ‘(1 2 3)

1 2 3

∅

Lisp syntax: car and cdr

• Access the first element of a cons cell with car

(car (cons 1 2)) = 1

• Access the second element with cdr

 (cdr (cons 1 2)) = 2

• What’s the value of the following expression? 
(car ‘(1 2 3))

• What about this?  
(cdr ‘(1 2 3))

Lisp syntax: functions

• Everything else is a function (or special form)

• There are a bunch of built-in functions

(car …)

(cdr …)

(append …), etc.

• And you can define your own  
(defun my-func (arg) (value))

Lisp syntax: conditionals

• In Lisp, there is no if/else

(cond ((test) (value)) …)

• E.g., 
(cond ((eq 1 x) (cons x xs)) …)

• Does the same as the Java  
if (x == 1) {  
 xs.add(x);  
}

Lisp syntax: conditionals

• cond is more general than if/else.

(cond ((test1) (value1))  
 ((test2) (value2)  
 …)

(defun insert (x l)  
 (cond ((eq l nil) (cons x nil))  
 ((< x (car l)) (cons x l))  
 (t (cons  
 (car l)  
 (insert x (cdr l))))))

That’s pretty much it!

• See “334 Lisp FAQ” for all the syntax you need to

know on course webpage

• If you happen to be looking at the book, a slightly

different syntax is used (mostly Scheme).

Activity

list length

(length-list ‘(1 2 3 4 5 6)) ↠ 6

Activity

Cow

Badger Eel

Aardvark Donkey Fox

Memory management

• C: 
When you want to use a variable, you have to

allocate it first, then decallocate it when done.

MyObject *m = malloc(sizeof(MyObject));

m->foo = 2;

m->bar = 3;

… do stuff with m …

free(m);

Memory management

• Lisp and Java:  
You barely need to think about this at all.

MyObject m = new MyObject(2,3);  
… do stuff with m …

(cons 2 3)

