CSClI 334:

Principles of Programming Languages

Lecture 9: Lisp

Instructor: Dan Barowy

Williams

Announcements

Midterm exam next Thursday

Optional Lisp homework posted later today

Feedback: slides insufficient (clarification?)

Choosing a language

Many good technical reasons

Few people decide for technical reasons

Seibel: Why do people get so religious about their computer languages?

Bloch: | don’t know. But when you choose a language, you're choosing
more than a set of technical trade-offs—you’re choosing a community. It’s
like choosing a bar. Yes, you want to go to a bar that serves good drinks,
but that’s not the most important thing. It’s who hangs out there and what
they talk about. And that’s the way you choose computer languages. Over
time the community builds up around the language—not only the people,
but the software artifacts: tools, libraries, and so forth. That’s one of the
reasons that sometimes languages that are, on paper, better than other
languages don’t win—because they just haven’t built the right communities

around themselves.

John McCarthy

Lisp was invented for Al research

04000

04001
okooz
04003
0400k
04005
04006
04007
04010
04011
04012
04013
oko1k
04015
04016

ono17
04020

0kok6
okoyT
04050
04051

04000

-0 53400 5 04011

-0 63400 4 04020

0 50000
177777
-2 00001
0 76500
0 26000
0 30000
177777
2 00001
0 60100
0 56000
0 26000
0 30000
-3 T7754

0 60100
1 00000

0 00000
0 00000
0 00000

1
1
¥
o
0
1
1
y
0
0
0
o
1

0
y

o
[
0

olozz
0look
04017
00043
04046
okozz
04011
04005
04051
04050
okox7
0405%

04050
04001
00005
00052
04021
00000
00000
00000

0 00000 0 00000

00001
00004
04000
00000

P!

]
S

TR S I R

5

o
2
=]

EQU
BSS

oo
ER-E:]

NN+ 3HN42
R/2

Ph-1

704 Assembly (circa 1954)
(From Coding the MIT-IBM 704 Computer)

C
(3 READ IN INPUT DATA
C
IF (ISYS-9S) 401,403,401
403 READ TAPE 3,(6(1),I1=1,8044)
REWIND 3
IF (SENSE SWITCH 6) 651,719
401 ISYS=99
429 CALL' INPUT
IF (L) 651,651,433
433 WRITE UUTPCT TAPE 6,443, HX,VXPLS,VXFIN:HF.VFPLS,VFNIN
1 (ELMT(1),BOX(I),BOF(I),I=1,L)
443 ;UKNAT (10K10XIDANT 3E16.6/10H FUEL 3E16.6/(1H A6,2E20.8))
C
C RIGHT ADJUST ELEMENT SYMBOLS
C

LO 447 K=1,L
TMLM = ELMT(K)
ELMT(K) = ARSF(24, TMLM)

FORTRAN (circa 1950)

Oll4
115
116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127

0130
0131
0132
0133
0134

(From NASA Technical Note D-1737)

(defun fact (n)
(cond ((eg n 0) 1)
(t (* n (fact (- n 1))))))

LISP (circa 1958)

LISP is a "functional’ language

programs are modeled after math. functions
no statements, only expressions

no ‘'mutable’ variables, only declarations
therefore, the effect of running a program
("evaluation’) is purely the effect of applying a

function to an input.

\WWhat does this mean?

there is no hidden state (globals in C) or state-
change rules (as in Java).

complex parts are composed out of simple
parts

we care about what a program means and not
what it does: you can understand a program
without having to mentally execute it

programs are easier to reason about

functional language (again)

programs are modeled after math. functions
no statements, only expressions

no ‘mutable’ variables, only declarations
therefore, the effect of running a program
("evaluation’) is purely the effect of applying a

function to an input.

LISP is a "functional” language

3

G
‘.N o/ @

Rule
)

+1 s
° S ‘-/o ou
(defun add-one (n) (+ n 1))

LISP is a "functional” language

dirty house

oy S
‘." o/@

Rule

.:‘ WWW (°° -
e S) — < ou

——————
d

© O

clean house

(defun cleaning-robot (dirt) ..)

Big functions are ‘composed’
tle functions

ouse

dlrty

clean house

(defun cleaning-robot (dirt) ..)

Program correctness is easier to achieve

dlrty house

clean house

l.e., whole is correct if pieces are correct.

LISP is inspired by the lambda calculus

+ everything either a value or a funct. of a value
value: 1
function of two values: (+ 1 1)

« syntaxis (mind-numbingly) regular
functions: (function-name arguments ..)
values: anything that is not a function

« evaluating a function produces a value:

(+ 1 1) » 2

Statements vs. expressions
« Astatement is an operation that changes the
state of the computer
Java: i++
value stored at location i incremented by one
* An expression is a combination of functions and
values that yields a new value
Lisp: (+1 1)

evaluating + with iand 1 returns i + 1

REPL
(read-eval-print loop)

Batch mode

Mutable variables

* If you can update a variable, your language has
mutable variables
Java int 1 = 3;
i = 4;
* Notice that both lines of code are statements

» (pure) Lisp does not have mutable variables

Immutable variables

« Variables cannot be updated in Lisp
Lisp: (defun my-func (i) ..)
(my-func 3)
or the shorter
((lambda (i) ..) 3)
» Notice that all of the above are expressions
« Infact, functions are the only way to bind

values to names in (pure) Lisp

Lisp syntax: atoms

* An atom is the most basic unit in Lisp: data
4
112.75
“hello”
‘foo
t

nil

Lisp syntax: cons cells

» cons cells are the basic unit of composition in
Lisp (recall C composes data with st ruct).

(cons “hello” 4)

/1 \
v X

“hello” 4

Lisp = LISt Processor

Lisp syntax: lists

* Eg. listsin Lisp are just made out of cons cells

(cons 1 (cons 2 (cons 3 nil)))

— —

W

| |
v v
1 2

* Lisp has a shorthand for this:
‘(1 2 3)

Lisp syntax: car and cdr

Access the first element of a cons cell with car
(car (cons 1 2)) =1

Access the second element with cdr

(cdr (cons 1 2)) = 2

What's the value of the following expression?
(car ‘(1 2 3))

What about this?
(cdr Y(1 2 3))

Lisp syntax: functions

« Everything else is a function (or special form)
« There are a bunch of built-in functions

(car ..)

(cdr ..)

(append ..), etc.

+ And you can define your own

(defun my-func (arg) (value))

Lisp syntax: conditionals

* InLisp, thereisno if/else

(cond ((test) (value)) ..)
- Eg,

(cond ((eg 1 x) (cons x xs)) ..)
» Does the same as the Java

if (x == 1) |

xs.add (x) ;

Lisp syntax: conditionals
* cond is more generalthan i f/else.
(cond ((testl) (valuel))
((test2) (value?2)
)

(defun insert (x 1)

(cond ((eg 1 nil) (cons x nil))
((< x (car 1)) (cons x 1))
(t (cons
(car 1)

(insert x (cdr 1))))))

That's pretty much it!

« See "334 Lisp FAQ' for all the syntax you need to

know on course webpage

+ If you happen to be looking at the book, a slightly
different syntax is used (mostly Scheme).

Activity

list length

(length-1list (1 2 3 4 5 0))

- 6

Activity Memory management
. C
Cow \When you want to use a variable, you have to
— T allocate it first, then decallocate it when done.
Badger‘ Eel MyObject *m = malloc(sizeof (MyObject));
/ /\ m->foo = 2;
AClr'dVClr'k Donkey FOX m->bar = 3;
. do stuff with m ..
free(m);

Memory management

+ Lisp and Java:
You barely need to think about this at all.
MyObject m = new MyObject (2, 3);
. do stuff with m ..

(cons 2 3)

