
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 10: Functional Programming

Announcements

Announcements

Midterm exam next class

Announcements

Midterm exam next class

You should have feedback for all HW—
if not, please let me know!

“Recursive Functions […]” (McCarthy)

Lisp C

“Recursive Functions […]” (McCarthy)

car

Lisp C

“Recursive Functions […]” (McCarthy)

car

Lisp C

head

“Recursive Functions […]” (McCarthy)

car

Lisp C

head

cdr

“Recursive Functions […]” (McCarthy)

car

Lisp C

head

cdr tail

“Recursive Functions […]” (McCarthy)

car

Lisp C

head

cdr tail

cons

“Recursive Functions […]” (McCarthy)

car

Lisp C

head

cdr tail

cons prepend

A

B

C

...

D

E

g()

f()

0

0

0

0

0

0

0

0

“mark-sweep”
garbage collection

A

B

C

...

D

E

g()

f()

0

0

0

0

0

0

0

0

“mark-sweep”
garbage collection

storage
location

A

B

C

...

D

E

g()

f()

0

0

0

0

0

0

0

0

“mark-sweep”
garbage collection

storage
location “mark” bit

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

0

0

0

0

0

0

0

A

B

C

...

D

E

g()

f()

1

1

0

0

0

0

0

0

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

0

0

0

1

0

0

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

0

0

0

1

0

1

1. Mark reachable cells

A

B

C

...

D

E

g()

f()

1

1

1

0

0

1

0

1

1. Mark reachable cells

A

B

C

...

g()

f()

1

1

1

1

1

2. Free (“sweep”) unreachable cells

3. Clear tags

A

B

C

...

g()

f()

0

0

0

0

0

Activity

list length

(length-list ‘(1 2 3 4 5 6)) ↠ 6

Mental technique #4 Mental technique #4

“Growth” mindset

Mental technique #4

“Growth” mindset

“In a fixed mindset students believe their basic abilities, their intelligence, their
talents, are just fixed traits. They have a certain amount and that's that, and
then their goal becomes to look smart all the time and never look dumb. In a
growth mindset students understand that their talents and abilities can be
developed through effort, good teaching and persistence.” 

— Carol Dweck (Lewis and Virginia Eaton Professor of Psychology at Stanford
University)

Mental technique #4

“Growth” mindset

“In a fixed mindset students believe their basic abilities, their intelligence, their
talents, are just fixed traits. They have a certain amount and that's that, and
then their goal becomes to look smart all the time and never look dumb. In a
growth mindset students understand that their talents and abilities can be
developed through effort, good teaching and persistence.” 

— Carol Dweck (Lewis and Virginia Eaton Professor of Psychology at Stanford
University)

Individuals with a "growth" mindset are more likely to continue working hard—
and succeed—despite setbacks.

Mental technique #4

“Growth” mindset

Mental technique #4

Your brain is a machine designed to
accommodate to a changing world.

“Growth” mindset

Mental technique #4

Demonstration

Mental technique #4

Demonstration

Mental technique #4

Demonstration (again)

Mental technique #4

Demonstration (again)

Mental technique #4

Demonstration (again)

If that made sense to you, raise your hand.

Mental technique #4

Demonstration (ungarbled)

Mental technique #4

Demonstration (ungarbled)

Mental technique #4

Demonstration

Mental technique #4

Demonstration

Mental technique #4

Demonstration (again)

Mental technique #4

Demonstration (again)

Mental technique #4

Demonstration (again)

Anil Seth, “Your brain hallucinates your
conscious reality”

Why am I telling you this? Why am I telling you this?

This course is about priming your brain with
different ways of thinking about programming.

Why am I telling you this? Why am I telling you this?

You can be a programmer without these ideas.

Why am I telling you this?

You can be a programmer without these ideas.

But make the effort to internalize these concepts
and you will see their application everywhere.

Why am I telling you this?

You can be a programmer without these ideas.

But make the effort to internalize these concepts
and you will see their application everywhere.

You will be a clearer thinker
and a better programmer.

Three amazing concepts from FP Three amazing concepts from FP

•First-class functions

Three amazing concepts from FP

•First-class functions

•Higher-order functions

Three amazing concepts from FP

•First-class functions

•Higher-order functions

•map

Three amazing concepts from FP

•First-class functions

•Higher-order functions

•map

•fold

a function

a function

+1

a function

+1

3

a function

+1

3

4

“first class” function

Functions are values in a programming language

a function a function

+1

a function

+1

3
a function

+1

3

4

a function
map

1

3

2

4

5

1

3

2

4

5

Like a for loop, but without mutable variables

(mapcar (lambda (x) (+ x 1) ‘(1 2 3 4 5))

Intuition:

map map

map

map

map

map

‘(1 2 3 4 5)

map

map

‘(1 2 3 4 5)

map

map

‘(1 2 3 4 5)
+1

map

map

‘(1 2 3 4 5)
+1

map

map

‘(1 2 3 4 5)
+1

‘(2 3 4 5 6)

map

map

‘(1 2 3 4 5)
+1

+1

1

2

‘(2 3 4 5 6)

map

map

‘(1 2 3 4 5)
+1

+1

1

2

+1

2

3

‘(2 3 4 5 6)

map

map

‘(1 2 3 4 5)
+1

+1

1

2

+1

2

3

+1

3

4

‘(2 3 4 5 6)

map

map

‘(1 2 3 4 5)
+1

+1

1

2

+1

2

3

+1

3

4

+1

4

5

‘(2 3 4 5 6)

map

map

‘(1 2 3 4 5)
+1

+1

1

2

+1

2

3

+1

3

4

+1

4

5

+1

5

6

‘(2 3 4 5 6)

fold

fold

Intuition:

fold

Intuition:

fold left fold left

(reduce #'+ '(1 2 3) :initial-value 0)

fold left

(reduce #'+ '(1 2 3) :initial-value 0)

acc = 0, ‘(1 2 3)

fold left

(reduce #'+ '(1 2 3) :initial-value 0)

acc = 0, ‘(1 2 3)

acc = 0+1, ‘(2 3)

fold left

(reduce #'+ '(1 2 3) :initial-value 0)

acc = 0, ‘(1 2 3)

acc = 0+1, ‘(2 3)

acc = 1+2, ‘(3)

fold left

(reduce #'+ '(1 2 3) :initial-value 0)

acc = 0, ‘(1 2 3)

acc = 0+1, ‘(2 3)

acc = 1+2, ‘(3)

acc = 3+3, nil

fold left

(reduce #'+ '(1 2 3) :initial-value 0)

acc = 0, ‘(1 2 3)

acc = 0+1, ‘(2 3)

acc = 1+2, ‘(3)

acc = 3+3, nil

returns acc = 6

fold right

fold right

(reduce #'+ '(1 2 3):initial-value 0

fold right

(reduce #'+ '(1 2 3):initial-value 0

 :from-end t)

fold right

(reduce #'+ '(1 2 3):initial-value 0

 :from-end t)

‘(1 2 3), acc = 0

fold right

(reduce #'+ '(1 2 3):initial-value 0

 :from-end t)

‘(1 2 3), acc = 0

‘(1 2), acc = 0+3

fold right

(reduce #'+ '(1 2 3):initial-value 0

 :from-end t)

‘(1 2 3), acc = 0

‘(1 2), acc = 0+3

‘(1), acc = 2+3

fold right

(reduce #'+ '(1 2 3):initial-value 0

 :from-end t)

‘(1 2 3), acc = 0

‘(1 2), acc = 0+3

‘(1), acc = 2+3

nil acc = 5+1

fold right

(reduce #'+ '(1 2 3):initial-value 0

 :from-end t)

‘(1 2 3), acc = 0

‘(1 2), acc = 0+3

‘(1), acc = 2+3

nil acc = 5+1

returns acc = 6

what does this print?

what does this print?

(reduce #'append '((1) (8))

what does this print?

(reduce #'append '((1) (8))

 :initial-value '(w i l l i a m s))

how about? how about?

(reduce #'append '((1) (8))

how about?

(reduce #'append '((1) (8))

 :initial-value '(w i l l i a m s)

how about?

(reduce #'append '((1) (8))

 :initial-value '(w i l l i a m s)

 :from-end t)

fold fold

structural recursion → fold it!

fold

structural recursion → fold it!

(in a nutshell: any problem that recurses on a subset of input)

fold

structural recursion → fold it!

(in a nutshell: any problem that recurses on a subset of input)

Ø

list length

fold

structural recursion → fold it!

(in a nutshell: any problem that recurses on a subset of input)

tree height

Ø

list length

fold

structural recursion → fold it!

(in a nutshell: any problem that recurses on a subset of input)

tree height

Ø

list length

(cdr
 (car
 (cons
 (cons ‘a ‘b)
 (cons ‘c ‘d)
)
)
)

evaluation

