CSCl 334:
Principles of Programming Languages

Lecture 10: Functional Programming

Instructor: Dan Barowy
Williams

Announcements

Announcements

Midterm exam next class

Announcements

Midterm exam next class

You should have feedback for all H\W/—
If not, please let me know!

‘Recursive Functions [.]" (McCarthy)

Lisp C

‘Recursive Functions [.]" (McCarthy)

Lisp C

car

‘Recursive Functions [.]" (McCarthy)

Lisp C
car head

‘Recursive Functions [.]" (McCarthy)

Lisp C
car head

cdr

‘Recursive Functions [.]" (McCarthy)

Lisp C
car head
cdr tail

‘Recursive Functions [.]" (McCarthy)

Lisp C
car head
cdr tail
cons

‘Recursive Functions [.]" (McCarthy)

Lisp c
car head
cdr tail
cons prepend

90

fO

‘mark-sweep’
garbage collection

— o | o] [] o]
//’
0] 0
N 4 | loflec] o]
N T
—
ENENY e | o]

‘mark-sweep’
garbage collection

storage
location

‘mark-sweep’
garbage collection

storage

location “mark” bit

!

90 — //I \Iﬂ o[o] 90 — //I vo] [o] o]
A 0 c 0 A 0 c 0
N Al Dllel o] N A | Dllel o]
o h T o 0 h T ol
]]
ENENG e | o ENENG e | o
| o] | o]
1. Mark reachable cells 1. Mark reachable cells
90 — //I \\III Lo | o] 90 — //I V] o[o]
A (0] [0] A 1 c 0
N A | Dojlec] o] N o [[t le] o]
& N T o K N T o
ENENG e | o ENENG e | o
| o] | o]

1. Mark reachable cells

1. Mark reachable cells

90 — // | \1 o[o] 90 — // | \\1 Lo | o]
A 1 [1 A 1 c 1
N o [lifjfel] N la | liffel]
& h T o 0 h T D]
]]
ENENG e | o ENENA e | o
| o] | o]
1. Mark reachable cells 2. Free ("sweep’) unreachable cells
50 —— F [\] [o[o] 50 ———’//‘Z@
A 1 c 1 A 1 c 1
\\ A [P lel i \\ A [Pl le] i
£0 £0
1 o]
ENENA e | o ENENA
SN A

3. Clear tags Activity
90 ___//J
e list length
| Ll _kjlel pj
£ A\
\\\
EEENG (length-list ‘(1 2 3 4 5 6)) »6
- | o]
Mental technique #4 Mental technique #4

‘Growth" mindset

Mental technique #4

‘Growth" mindset

"In a fixed mindset students believe their basic abilities, their intelligence, their
talents, are just fixed traits. They have a certain amount and that's that, and
then their goal becomes to look smart all the time and never look dumb. In a
growth mindset students understand that their talents and abilities can be
developed through effort, good teaching and persistence!

— Carol Dweck (Lewis and Virginia Eaton Professor of Psychology at Stanford
University)

Mental technique #4

‘Growth" mindset

"In a fixed mindset students believe their basic abilities, their intelligence, their
talents, are just fixed traits. They have a certain amount and that's that, and
then their goal becomes to look smart all the time and never look dumb. In a
growth mindset students understand that their talents and abilities can be
developed through effort, good teaching and persistence!

— Carol Dweck (Lewis and Virginia Eaton Professor of Psychology at Stanford
University)

Individuals with a "growth" mindset are more likely to continue working hard—
and succeed—despite setbacks.

Mental technique #4

‘Growth" mindset

Mental technique #4

‘Growth" mindset

Your brain is a machine designed to
accommodate to a changing world.

Mental technique #4

Demonstration

Mental technique #4

Demonstration

Mental technique #4

Demonstration (again)

Mental technique #4

Demonstration (again)

Mental technique #4

Demonstration (again)

If that made sense to you, raise your hand,

Mental technique #4

Demonstration (ungarbled)

Mental technique #4

Demonstration (ungarbled)

Mental technique #4

Demonstration

Mental technique #4

Demonstration

Mental technique #4

Demonstration (again)

Mental technique #4

Demonstration (again)

Mental technique #4

Demonstration (again)

Anil Seth, "Your brain hallucinates your
conscious reality”

Why am | telling you this?

Why am | telling you this?

\ ?{’! T by~

\\\\\\\\\\\\

This course is about priming your brain with
different ways of thinking about programming.

Why am | telling you this?

Why am | telling you this?

You can be a programmer without these ideas.

Why am | telling you this?

You can be a programmer without these ideas.

But make the effort to internalize these concepts
and you will see their application everywhere.

Why am | telling you this?

You can be a programmer without these ideas.

But make the effort to internalize these concepts
and you will see their application everywhere.

You will be a clearer thinker
and a better programmer.

Three amazing concepts from FP

Three amazing concepts from FP

- First-class functions

Three amazing concepts from FP

- First-class functions

- Higher-order functions

Three amazing concepts from FP

- First-class functions
- Higher-order functions

-map

Three amazing concepts from FP

- First-class functions

- Higher-order functions
-map

-fold

a function
() @ o @ -
W S

Te—=—=—2 [0V

a function a function
3
o PP
[>) 0 <) S /|
W 2 © W 2@
o5 - Rule - ote - Rule ~
:‘ +1 (°° () :\ +1 (°° X
7 (0 —————7 [0V
o o o,) © o o ()
a function “first class’ function
3
+ s G
[a) o :
W S

:\ +1 (co -
T——=—=—¢ [0V

© o

o——
9 o O

Functions are values in a programming language

a function

S8

a function

(-—) D (U T
W W 2 @
o5 Rule - ote Rule ~
) 3 D 11 |
Q = —< ou Q = —< ou
o () S ()
a function a function
3 3
+ - + o)
) (US @ :) (U :
N £ W 27
o5 Rule - QX - Rule ~
0\ +1 (°° - :\ +1 (°o -
2/ [0V a2/ [0V
o5 [—) . 5

!N >/ C) @i
£

|

== (W
Like a for loop, but without mutable variables
(mapcar (lambda (x) (+ x 1) ‘(1 2 3 4 5))
map map
-
W e e

|
B

map map

‘(1 2 3 4)5)

\ o

o Rule = az ~|_Rule | -
N e | E N aep |8

zl
N

@63
0
N

®

=</ [0V

‘(1 2 3 45) ‘(1 2 3 45)

— L)
O O
@\
7o) To)
o 1]l
© < I 4
& ™ ™
o AN
~ N
Py —~
1e) T}
4 4
™ ™
'\ N
— i
~r N
—~
(o]
o]
0,
o <
c ™
(9]
N

‘(1 2 3 4)5)

‘(1 2 34)5)

(1234
P
=’

\N °a§2®)

[~ &

S—=7 &

(1234
5 T
Wirspe
By
.\°?:—/°°
23456 ‘(2 345 6)
fold

@25

o sas e

Intuition:

fold

fold

Intuition:

fold left

fold left

(reduce #'+ '(1 2 3) :initial-value 0)

fold left

(reduce #'+ '"(1 2 3) :initial-value 0)

acc = 0, Y(1 2 3)

fold left

(reduce #'+ '"(1 2 3)

acc = 0,

acc = 0+1,

tinitial-value 0)

‘(1 2 3)
‘(2 3)

fold left

(reduce #'4+ '"(1 2 3) :initial-value 0)

‘(1 2 3)
acc = 0+1, ‘(2 3)

acc = 1+2, Y (3)

acc = 0,

fold left

(reduce #'+ '"(1 2 3)

acc = 0,

acc = 0+

acc =

acc =

:initial-value 0)

‘(12 3)
1, (2 3)
1+2, Y (3)

3+3, nil

fold left

(reduce #'+ '"(1 2 3) :initial-value 0)

returns acc =

acc = 0, Y(1 2 3)
acc = 0+1, ‘(2 3)
acc = 1+2, Y (3)

acc = 3+3, nil

6

fold right

fold right

(reduce #'+ '(1 2 3):initial-value O

fold right

(reduce #'+ '(1 2 3):initial-value O

:from-end t)

fold right

(reduce #'+ '"(1 2 3):initial-value O

:from-end t)

‘(1 2 3), acc = 0

fold right

(reduce #'+ '"(1 2 3):initial-value O

:from-end t)

‘(1 2 3), acc = 0
‘(1 2), acc = 043

fold right

(reduce #'+ '(1 2 3):initial-value O

:from-end t)

‘(1 2 3), acc =0
‘(1 2), acc = 0+3

‘' (1), acc = 2+3

fold right

(reduce #'+ '(1 2 3):initial-value O

:from-end t)

‘(1 2 3), acc =0
‘(1 2), acc = 043
‘' (1), acc = 2+3

nil acc = 5+1

fold right

(reduce #'+ '"(1 2 3):initial-value O

:from-end t)

‘(1 2 3), acc = 0
‘(1 2), acc = 043
(1), acc = 2+3

nil acc = 5+1

returns acc = 6

what does this print?

what does this print?

(reduce #'append ' ((1) (8))

what does this print?

(reduce #'append ' ((1) (8))

:initial-value '"(w 1 1 1 1 a m s))

how about? how about?

(reduce #'append ' ((1) (8))

how about? how about?

(reduce #'append ' ((1) (8)) (reduce #'append ' ((1) (8))
:initial-value '"(w i 1 1 1 a m s) :initial-value '"(w i 1 1 1 a m s)

:from-end t)

fold

fold

structural recursion — fold it!

fold

structural recursion = fold it!

(in a nutshell: any problem that recurses on a subset of input)

fold

structural recursion — fold it!

(in a nutshell: any problem that recurses on a subset of input)

nfusfasfanfiz

list length

fold fold

structural recursion — fold it! structural recursion — fold it!

(in a nutshell: any problem that recurses on a subset of input) (in a nutshell: any problem that recurses on a subset of input)

nlafafafi nlafafafi

list length tree height | list length tree height | evaluation

