
CSCI 334: 
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 10: Functional Programming
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You should have feedback for all HW— 
if not, please let me know!
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3. Clear tags
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Activity

list length

(length-list ‘(1 2 3 4 5 6)) ↠ 6
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Mental technique #4

“Growth” mindset

“In a fixed mindset students believe their basic abilities, their intelligence, their 
talents, are just fixed traits. They have a certain amount and that's that, and 
then their goal becomes to look smart all the time and never look dumb. In a 
growth mindset students understand that their talents and abilities can be 
developed through effort, good teaching and persistence.” 

— Carol Dweck (Lewis and Virginia Eaton Professor of Psychology at Stanford 
University)
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“In a fixed mindset students believe their basic abilities, their intelligence, their 
talents, are just fixed traits. They have a certain amount and that's that, and 
then their goal becomes to look smart all the time and never look dumb. In a 
growth mindset students understand that their talents and abilities can be 
developed through effort, good teaching and persistence.” 

— Carol Dweck (Lewis and Virginia Eaton Professor of Psychology at Stanford 
University)

Individuals with a "growth" mindset are more likely to continue working hard—
and succeed—despite setbacks.
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Mental technique #4

Your brain is a machine designed to 
accommodate to a changing world.

“Growth” mindset
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If that made sense to you, raise your hand.
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Demonstration (again)

Anil Seth, “Your brain hallucinates your 
conscious reality”
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This course is about priming your brain with 
different ways of thinking about programming.
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You can be a programmer without  these ideas.
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and you will see their application everywhere.

Why am I telling you this?

You can be a programmer without  these ideas.

But make the effort to internalize these concepts 
and you will see their application everywhere.

You will be a clearer thinker 
and a better programmer.
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Functions are values in a programming language
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Like a for loop, but without mutable variables

(mapcar (lambda (x) (+ x 1) ‘(1 2 3 4 5))

Intuition:

map map
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fold right

(reduce #'+ '(1 2 3):initial-value 0

                :from-end t)
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nil acc = 5+1
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structural recursion → fold it!

(in a nutshell: any problem that recurses on a subset of input)

tree height

Ø

list length

(cdr 
  (car 
    (cons 
      (cons ‘a ‘b) 
      (cons ‘c ‘d) 
    ) 
  ) 
)

evaluation


