CSCl 334:
Principles of Programming Languages

Lecture 10: Functional Programming

Instructor: Dan Barowy
Williams
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You should have feedback for all H\W/—
If not, please let me know!
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‘Growth" mindset

"In a fixed mindset students believe their basic abilities, their intelligence, their
talents, are just fixed traits. They have a certain amount and that's that, and
then their goal becomes to look smart all the time and never look dumb. In a
growth mindset students understand that their talents and abilities can be
developed through effort, good teaching and persistence!

— Carol Dweck (Lewis and Virginia Eaton Professor of Psychology at Stanford
University)
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"In a fixed mindset students believe their basic abilities, their intelligence, their
talents, are just fixed traits. They have a certain amount and that's that, and
then their goal becomes to look smart all the time and never look dumb. In a
growth mindset students understand that their talents and abilities can be
developed through effort, good teaching and persistence!

— Carol Dweck (Lewis and Virginia Eaton Professor of Psychology at Stanford
University)

Individuals with a "growth" mindset are more likely to continue working hard—
and succeed—despite setbacks.
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‘Growth" mindset

Your brain is a machine designed to
accommodate to a changing world.




Mental technique #4

Demonstration

Mental technique #4

Demonstration

Mental technique #4

Demonstration (again)

Mental technique #4

Demonstration (again)




Mental technique #4

Demonstration (again)

If that made sense to you, raise your hand,
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Anil Seth, "Your brain hallucinates your
conscious reality”
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This course is about priming your brain with
different ways of thinking about programming.
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But make the effort to internalize these concepts
and you will see their application everywhere.

Why am | telling you this?

You can be a programmer without these ideas.

But make the effort to internalize these concepts
and you will see their application everywhere.

You will be a clearer thinker
and a better programmer.
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Functions are values in a programming language
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Like a for loop, but without mutable variables
(mapcar (lambda (x) (+ x 1) ‘(1 2 3 4 5))
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fold left

(reduce #'+ '"(1 2 3) :initial-value 0)

returns acc =

acc = 0, Y(1 2 3)
acc = 0+1, ‘(2 3)
acc = 1+2, Y (3)

acc = 3+3, nil

6

fold right

fold right

(reduce #'+ '(1 2 3):initial-value O

fold right

(reduce #'+ '(1 2 3):initial-value O

:from-end t)




fold right

(reduce #'+ '"(1 2 3):initial-value O

:from-end t)

‘(1 2 3), acc = 0

fold right

(reduce #'+ '"(1 2 3):initial-value O

:from-end t)

‘(1 2 3), acc = 0
‘(1 2), acc = 043

fold right

(reduce #'+ '(1 2 3):initial-value O

:from-end t)

‘(1 2 3), acc =0
‘(1 2), acc = 0+3

‘' (1), acc = 2+3

fold right

(reduce #'+ '(1 2 3):initial-value O

:from-end t)

‘(1 2 3), acc =0
‘(1 2), acc = 043
‘' (1), acc = 2+3

nil acc = 5+1




fold right

(reduce #'+ '"(1 2 3):initial-value O
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‘(1 2 3), acc = 0
‘(1 2), acc = 043
(1), acc = 2+3

nil acc = 5+1

returns acc = 6
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