
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 11: ML and F#

Announcements

Announcements

Midterm exam grades emailed

Announcements

Midterm exam grades emailed

Need to meet with me 1 on 1 to get graded
exam back

Announcements

Midterm exam grades emailed

Need to meet with me 1 on 1 to get graded
exam back

Exam grade distribuion
0

1

2

3

4

5

6

A+ A A- B+ B B- C+ C C- D+ D D- F

Midterm Grade Distribution

Why I dislike grades

Let’s say you get a 60% on your exam.

Why I dislike grades

Why I dislike grades

“40% of your work is incorrect. You
should study up on that 40% so that

you will finish this course knowing
the full 100%.”

What your grade means.

Why I dislike grades
What your grade does not mean.

“I like you 40% less than
my A students.”

Surprised; Embarassed

How you feel

Your grade has almost no bearing on
whether I like you or not.

The same goes for most faculty.

Why I dislike grades

(It is sometimes even inversely correlated.)

To turn a weakness into a strength.

The purpose of a class

A grade is just one way to identify a
weakness.

The purpose of a class

“It is our choices, Harry, that show what we
truly are, far more than our abilities.”

Why I dislike grades

1960

1970

1980

1990

2000

2010

LISP
1950

ML

Standard ML Caml
OCaml

Miranda
Haskell

F#

Java

C#

ML

ML ML

• Dana Scott

ML

• Dana Scott

• Logic of Computable Functions

(LCF)

ML

• Dana Scott

• Logic of Computable Functions

(LCF)

•Automated proofs!

ML

• Dana Scott

• Logic of Computable Functions

(LCF)

•Automated proofs!

•Theorem proving is essentially a

“search problem”.

ML

• Dana Scott

• Logic of Computable Functions

(LCF)

•Automated proofs!

•Theorem proving is essentially a

“search problem”.

• It is (essentially) NP-Complete

ML

• Dana Scott

• Logic of Computable Functions

(LCF)

•Automated proofs!

•Theorem proving is essentially a

“search problem”.

• It is (essentially) NP-Complete

•But works “in practice” with the

right “tactics”

ML

ML

• Robin Milner

ML

• Robin Milner

• How to program tactics?

ML

• Robin Milner

• How to program tactics?

• A “meta-language” is needed

ML

• Robin Milner

• How to program tactics?

• A “meta-language” is needed

• ML is born (1973)

F# F#

• Don Syme

F#

• Don Syme

• ML is “more fun” than Java or C#.

F#

• Don Syme

• ML is “more fun” than Java or C#.

• Can we use ML instead?

F#

• Don Syme

• ML is “more fun” than Java or C#.

• Can we use ML instead?

• F# is born (2010).

ML Features: static types

ML Features: static types

• Core: LISP + “static types”

ML Features: static types

• Core: LISP + “static types”

• types are checked before program runs

ML Features: static types

• Core: LISP + “static types”

• types are checked before program runs

• Static types guarantee correctness of programs

ML Features: static types

• Core: LISP + “static types”

• types are checked before program runs

• Static types guarantee correctness of programs

• Why does this not violate halting problem?

ML Features: static types

• Core: LISP + “static types”

• types are checked before program runs

• Static types guarantee correctness of programs

• Why does this not violate halting problem?

• All “well-typed” programs do not fail at runtime

ML Features: parametric polymorphism

ML Features: parametric polymorphism

let swapInt(x: int, y: int): int*int = (y,x)

ML Features: parametric polymorphism

let swapInt(x: int, y: int): int*int = (y,x)
let swapReal(x: real, y: real): real*real = (y,x)

ML Features: parametric polymorphism

let swapInt(x: int, y: int): int*int = (y,x)
let swapReal(x: real, y: real): real*real = (y,x)
let swapString(x: string, y: string): string*string = (y,x)

ML Features: parametric polymorphism

• “abstract types” allow programmers to write generic

programs; reveal underlying idea without boilerplate

let swapInt(x: int, y: int): int*int = (y,x)
let swapReal(x: real, y: real): real*real = (y,x)
let swapString(x: string, y: string): string*string = (y,x)

ML Features: parametric polymorphism

• “abstract types” allow programmers to write generic

programs; reveal underlying idea without boilerplate

let swapInt(x: int, y: int): int*int = (y,x)
let swapReal(x: real, y: real): real*real = (y,x)
let swapString(x: string, y: string): string*string = (y,x)

let swap(x: 'a, y: 'b): 'b * 'a = (y,x)

ML Features: type inference

ML Features: type inference

let swap(x: 'a, y: 'b): 'b * 'a = (y,x)

ML Features: type inference

• writing types is hard (and sometimes ugly!)

let swap(x: 'a, y: 'b): 'b * 'a = (y,x)

ML Features: type inference

• writing types is hard (and sometimes ugly!)

let swap(x: 'a, y: 'b): 'b * 'a = (y,x)

let swap(x, y) = (y,x)

ML Features: exceptions

ML Features: exceptions

• Milner: it’s hard to write well-typed programs

ML Features: exceptions

• Milner: it’s hard to write well-typed programs

• mechanism to allow programs to signal error

ML Features: exceptions

• Milner: it’s hard to write well-typed programs

• mechanism to allow programs to signal error

• and correct for them at runtime

ML Features: exceptions

• Milner: it’s hard to write well-typed programs

• mechanism to allow programs to signal error

• and correct for them at runtime

let foo() =
exception DivByZero of string
if x = 0 then raise DivByZero(“no zeros!”)

ML Features: exceptions

• Milner: it’s hard to write well-typed programs

• mechanism to allow programs to signal error

• and correct for them at runtime

let foo() =
exception DivByZero of string
if x = 0 then raise DivByZero(“no zeros!”)

…

ML Features: exceptions

• Milner: it’s hard to write well-typed programs

• mechanism to allow programs to signal error

• and correct for them at runtime

let foo() =
exception DivByZero of string
if x = 0 then raise DivByZero(“no zeros!”)

…

try
 foo()
with
| DivByZero msg -> do something else

ML Features: side effects; mutability ML Features: side effects; mutability

• These are features?

ML Features: side effects; mutability

• These are features?

• For real-world programs, yes.

ML Features: side effects; mutability

• These are features?

• For real-world programs, yes.

let foo() =
 let name = “Dan”
 printfn “%s” (name + “\n”)

side effect

ML Features: side effects; mutability

• These are features?

• For real-world programs, yes.

let foo() =
 let name = “Dan”
 printfn “%s” (name + “\n”)

side effect

 let mutable x = 3
 x <- 4

mutability

ML Features: side effects; mutability

• These are features?

• For real-world programs, yes.

let foo() =
 let name = “Dan”
 printfn “%s” (name + “\n”)

side effect

 let mutable x = 3
 x <- 4

mutability

• Both are often essential for speed

ML Features: side effects; mutability

• These are features?

• For real-world programs, yes.

let foo() =
 let name = “Dan”
 printfn “%s” (name + “\n”)

side effect

 let mutable x = 3
 x <- 4

mutability

• Both are often essential for speed

• But can be largely avoided in many programs for safety

ML Features: side effects; mutability

• These are features?

• For real-world programs, yes.

let foo() =
 let name = “Dan”
 printfn “%s” (name + “\n”)

side effect

 let mutable x = 3
 x <- 4

mutability

• Both are often essential for speed

• But can be largely avoided in many programs for safety

• Do not use these in this class unless instructed.

!21

Running F#

•Type fsharpi on Unix machines

•#quit;; to quit

•Enter expression or declarations to evaluate:  

> 3 + 5;;
val it : int = 8
>it * 2;;
val it : int = 16
> let six = 3 + 3;;
val six : int = 6;;

Defining Functions

•Example
 > let succ x = x + 1;;
 val succ : x:int -> int
 > succ 12;;
 val it : int = 13
 > 17 * (succ 3);;
 val it : int = 68

•Or:
 > let succ = fun x -> x + 1;;
 val succ : int -> int

No type info
given- compiler
infers it

Recursion

•Most functions written using recursion and  
if.. then.. else (and patterns):
> let rec fact n =  
 if n = 0 then 1 else n * fact (n-1);;

•if..then..else is an expression:
> if 3<4 then "moo" else “cow";;
val it : string = "moo"
- types of both branches must match

Local Declarations

> let cylinderVolume diameter height =
 let radius = diameter / 2.0
 let square y = y * y
 3.14 * square radius * height
 ;;
val cylinderVolume : float -> float -> float

> cylinderVolume 6.0 6.0;;
val it : float = 169.56

Built-in Data Types

•unit
– only value is ()

•bool
– true, false
– not, and, or

• int
– ..., -2, -1, 0, 1, 2, ...
– +,-,*,/,%,abs
– =,<,<=,<> etc.

Built-in Data Types

• float / double
– 3.17, 2.2, ...
– +, -, *, /
– =, <>, <, <=, etc.
– no implicit conversions from int to float: 

 2 + 3.3  
 is bad

– Original ML had no equality for float (test that -0.001
< x-y < 0.001, etc.)

•strings
– "moo"
– "moo" + “cow"

Overloaded Operators

•+,-,etc. defined on both int and float

•Which variant inferred depends on operands:  

> let succ x = x + 1
val succ : int -> int

> let double x = x * 2.0
val double float -> float

> let double x = x + x
val double : int -> int

Type Declarations

•Can add types when type inference does not work

- fun double (x:float) = x + x;
val double : float -> float

- fun double (x:float) : float = x + x;
val double : float -> float

Compound Types

•Tuples, Records, Lists

•Tuples
(14, "moo", true): int * string * bool

•Functions can take tuple argument
> let rec power (exp,base) =  
 if exp = 0 then 1  
 else base * power(exp-1,base);;

val power: int -> int -> int
- power(3,2);;

Curried Functions (named after Haskell Curry)

•Previous power
> let rec power (exp,base) =  
 if exp = 0 then 1  
 else base * power(exp-1,base);

val power: int * int -> int

•Curried power function
> let rec cpower exp base =  
 if exp = 0 then 1  
 else base * cpower (exp-1) base;;

val cpower: int -> (int -> int)

Curried Functions (named after Haskell Curry)

•Why is this useful?
> let cpower exp base =  
 if exp = 0 then 1  
 else base * cpower (exp-1) base;

val cpower : int -> (int -> int)

Curried Functions (named after Haskell Curry)

•Why is this useful?
> let cpower exp base =  
 if exp = 0 then 1  
 else base * cpower (exp-1) base;

val cpower : int -> (int -> int)

•Can define
let square = cpower 2
val square : int -> int
- square 3;;
val it : int = 9

Curried Functions (named after Haskell Curry)

