
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 12: ML and F#

Announcements

Lab machines: see email for dotnet fix

Also, clarified zip3 example in HW6 PDF

Compound Types:

Records,
Lists,

Tuples,
ADTs

Records

Records

•Like tuple, but with labeled elements: 

> type Point = { X: float; Y: float; Z:
float; }

> let mypoint = { X = 1.0; Y = 1.0; Z =
-1.0 };

•Selector operator: 

> mypoint.X;;
val it : float = 1.0
- mypoint.Z;
val it : float = -1.0

Lists

Lists

•Examples
– [1; 2; 3; 4], [“wombat"; "numbat"]
– [] is empty list
– all elements of list must be same type

•Operations 

– length length [1;2;3] ⇒ 3

– append [1;2]@[3;4] ⇒ [1; 2; 3; 4]

– cons 1::[2;3] ⇒ [1; 2; 3]

– map List.map succ [1;2;3] ⇒ [2;3;4]

Many Types Of Lists

•1::2::[] : int list  
“wombat”::"numbat"::[] : string list

•What type of list is []?
- [];
val it : 'a list

•Polymorphic type
– 'a is a type variable that represents any type
– 1::[] : int list
– “a”::[] : string list

Lists

•Functions on Lists (usually recursive)

> let rec product nums =
 if (nums = [])
 then 1
 else
 (List.head nums)
 * product(List.tail nums);;

val product : int list -> int

- product [5; 2; 3];;
val it : int = 30

Pattern Matching

pattern matching

A pattern is built from

•values,

•constructors,

•and variables

• Tests whether value(s) have shape defined by pattern

• If matches, binds variable(s) in pattern to value(s)

Pattern Matching on Integers

•Patterns on integers
let rec listInts n =
 match n with
 | 0 -> [0]
 | n -> n :: listInts (n-1);;

> listInts 3;;
val it : int list = [3; 2; 1; 0]

•Let’s flip this list around

Revisiting Local Declarations

•You can define anything almost anywhere.
•E.g., a function inside a function. This is very useful.

let listInts n =
 let rec li n =
 match n with
 | 0 -> [0]
 | n -> n :: li (n-1)
 List.rev (li n)

> listInts 3;;
val it : int list = [0; 1; 2; 3]

Pattern Matching on Lists

•List is one of two things:
– []
– "first elem" :: "rest of elems"
– E.g., [1; 2; 3] = 1::[2,3] = 1::2::[3]  
= 1::2::3::[]

•Can define function by cases

let rec product xs =
 match xs with
 | [] -> 1
 | x::xs -> x * product (xs);;

The Length Function

•Another Example

let rec length xs =
 match xs with
 | [] -> 0
 | x::xs -> 1 + length xs;;

•What is the type of length?

Pattern Matching on Tuples

let rec cartesianProduct xs ys =
 match xs,ys with
 | [],_ -> []
 | _,[] -> []
 | x::xs’,_ ->
 let zs = List.map (fun y -> (x,y)) ys
 zs @ cartesianProduct xs’ ys

Patterns and Other Declarations

•Patterns can be used in place of variables

•Most basic pattern form
– let <pattern> = <exp>;

•Examples
– let x = 3;;
– let tuple = ("moo", “cow");;
– let (x,y) = tuple;;
– let myList = [1; 2; 3];;
– let w::rest = myList;;
– let v::_ = myList;;

Activity

Write a function is_older that takes two dates (where a
date is int*int*int) and returns true or false. It
evaluates to true if and only if the first argument is a date
that comes before the second argument. If the two dates
are the same, return false.

E.g.,
is_older (2018,2,21) (2018,2,22) returns true

Activity

• Write a function number_in_month that takes a list of dates

(where a date is int*int*int) and an int month and

returns how many dates are in month

