CSCl 334:
Principles of Programming Languages

Lecture 122 ML and F#

Instructor: Dan Barowy
Williams

Announcements

Lab machines; see email for dotnet fix

Also, clarified zip3 example in HW6 PDF

Compound Types:

Records,
Lists,
Tuples,
ADTs

Records

Records

e Like tuple, but with labeled elements:

> type Point = { X: float; Y: float; 7Z:

float; }
> let mypoint = { X = 1.0; Y = 1.0; %
-1.0 1},

e Selector operator:

> mypoint.X;;
val it : float
- mypoint.Z;
val it : float

I
=
o

Il

|
=
(@)

Lists

Lists

e Examples
-[1; 2; 3; 471, [“wombat"; "numbat"]
- [1isempty list
- all elements of list must be same type

e Operations

- length length [1;2;3] =3
- append [1;2]1Q@Q[3;4] = [1; 2; 3; 4]
- cons 1::[2;3]1=11; 2; 3]

- map List.map succ [1;2;3] = [2;3;4]

Many Types Of Lists

el::2::[] : int 1list
“wombat”::"numbat"::[] : string list
o What type of listis []17
- [l
val it : 'a list
e Polymorphic type
- 'ais a type variable that represents any type
—1::[] : int 1list
-Ya”::[] : string list

Lists

e Functions on Lists (usually recursive)

> let rec product nums =
if (nums = [])
then 1
else

(List.head nums)

* product (List.tail nums);;
val product : int list -> int
- product [5; 2; 31;;
val it : int

Il
w
o

Pattern Matching

pattern matching

A pattern is built from
-values,
- constructors,

-and

« Tests whether value(s) have shape defined by pattern

* If matches, binds variable(s) in pattern to value(s)

Pattern Matching on Integers

e Patterns on integers
let rec listInts n =
match n with
| 0 => [0O]
| n => n :: listInts (n-1);;
> listInts 3;;
val it : int list = [3; 2; 1;

o | et's flip this list around

Revisiting Local Declarations

eYou can define anything almost anywhere.

*E.g., a function inside a function. This is very useful.

let listInts n
let rec 1i n =
match n with

[0 -> [0]
| n ->n :: 1i (n-1)
List.rev (1li n)

> listInts 3;;
val it : int list = [0; 1;

Pattern Matching on Lists

e List is one of two things:
- 1]

= 1::2::[3]

- "first elem" :: "rest of elems"
-E.g., [1; 2; 3] = 1::[2,3]
= 1::2::3::[]

e Can define function by cases

let rec product xs =
match xs with
|] -> 1

| x::xs -> x * product (xs);;

The Length Function

e Another Example
let rec length xs =
match xs with

[[] -> 0
| x::xs -> 1 + length xs;;

o \X/hat is the type of length?

Pattern Matching on Tuples

let rec cartesianProduct xs ys

match xs,ys with
[{1, -> []
[, T[] -> []

| x::xs8’, ->

let zs = List.map (fun y ->

zs @ cartesianProduct xs’

ysS

(x,¥))

Patterns and Other Declarations

e Patterns can be used in place of variables

e Most basic pattern form
- let <pattern> = <exp>;

e Examples
-let x = 3;;
- let tuple = ("moo", “cow");;
-let (x,y) = tuple;;
—let myList = [1; 2; 31;;
—let w::rest = myList;;
—let v:: = myList;;

Activity

Write a function is older that takes two dates (where a
dateis int*int*int) and returns true or false. It
evaluates to true if and only if the first argument is a date
that comes before the second argument. If the two dates
are the same, return false.

Eg.
is older (2018,2,21) (2018,2,22) returns true

Activity

« Write a function number in month that takes a list of dates
(Where adateis int*int*int)and an int month and

returns how many dates are in month

