
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 13: Parsing

Announcements

Announcements

HW7 Q5 updated (it’s a tad easier now)

Announcements

HW7 Q5 updated (it’s a tad easier now)

You can find the Parser lib linked in the reading.

Announcements

HW7 Q5 updated (it’s a tad easier now)

You can find the Parser lib linked in the reading.

HW4 resubmission: last day to submit is today

Announcements

HW7 Q5 updated (it’s a tad easier now)

You can find the Parser lib linked in the reading.

HW4 resubmission: last day to submit is today

HW8 is your project proposal: think about who
you want to work with. I am happy to help find

partners.

Compound Types:

Records,
Lists,

Tuples,
ADTs

Compound Types:

Records,
Lists,

Tuples,
ADTs

Compound Types:

Records,
Lists,

Tuples,
ADTs

Compound Types:

Records,
Lists,

Tuples,
ADTs

Algebraic Data Types not
Abstract Data Types

Hoare Property

“There are two ways of
constructing a software
design: One way is to make
it so simple that there are
obviously no deficiencies,
and the other way is to
make it so complicated that
there are no obvious
deficiencies.” — C.A.R. Hoare

Hoare Property

ADTs make the structure of a program’s logic
“more obvious.”

ADT (Java)

public static final int NORTH = 1;
public static final int SOUTH = 2;
public static final int EAST = 3;
public static final int WEST = 4;

public move(int x, int y, int dir) {
 switch (dir) {
 case NORTH: ...
 case ...
 }
}

ADT (F#): “discriminated unions”

type Direction =  
 North | South | East | West;

ADT (F#): “discriminated unions”

type Direction =  
 North | South | East | West;

let move x y dir =
 match x,y,dir with
 | x,y,North -> x,y-1
 | x,y,South -> x,y+1

ADT (F#): “discriminated unions”

type Direction =  
 North | South | East | West;

let move x y dir =
 match x,y,dir with
 | x,y,North -> x,y-1
 | x,y,South -> x,y+1

• Above is an “incomplete pattern”

• ML will warn you when you’ve missed a case!

• “proof by exhaustion”

ADTs can have parameters

•Pattern match to extract parameters

type Shape =
| Rectangle of float * float
| Circle of float

let s = Rectangle(1.0,4.0)
match s with
| Rectangle(w,h) -> …
| Circle(r) -> …

ADTs can have named parameters

•Names are useful for initialization and documentation.

type Shape =
| Rectangle of width: float * height: float
| Circle of radius: float

let s = Rectangle(height = 1.0, width = 4.0)

ADTs can even be recursive and generic

type MyList<'a> =
| Empty
| NonEmpty of head: 'a * tail: MyList<'a>

> NonEmpty(2, Empty);;
val it : MyList<int> = NonEmpty (2,Empty)

handling errors with ADTs and patterns

• Another example: handling errors.

handling errors with ADTs and patterns

• Another example: handling errors.

• F# has exceptions (like Java)

handling errors with ADTs and patterns

• Another example: handling errors.

• F# has exceptions (like Java)

• But an alternative, easy way to handle many

errors is to use the option type:

handling errors with ADTs and patterns

• Another example: handling errors.

• F# has exceptions (like Java)

• But an alternative, easy way to handle many

errors is to use the option type:

type Option<‘a> = None | Some of 'a

handling errors with ADTs and patterns

Write a function get_nth that takes a list of strings and

an int n and returns the nth element of the list, where

the head is 1st.

handling undefinedness with patterns

let rec get_nth xs n =
 match xs,n with  
 | [] , _ -> None
 | (x::xs), 1 -> Some x
 | (x::xs), n ->
 if n > 1 then get_nth xs (n-1) else None

handling undefinedness with patterns

let rec get_nth xs n =
 match xs,n with  
 | [] , _ -> None
 | (x::xs), 1 -> Some x
 | (x::xs), n ->
 if n > 1 then get_nth xs (n-1) else None

handling undefinedness with patterns

let rec get_nth xs n =
 match xs,n with  
 | [] , _ -> None
 | (x::xs), 1 -> Some x
 | (x::xs), n ->
 if n > 1 then get_nth xs (n-1) else None

handling undefinedness with patterns

let rec get_nth xs n =
 match xs,n with  
 | [] , _ -> None
 | (x::xs), 1 -> Some x
 | (x::xs), n ->
 if n > 1 then get_nth xs (n-1) else None

handling undefinedness with patterns option type

• Why option?

option type

• Why option?

• option is a data type; 

not handling errors is a static type error!

option type

handling errors with patterns

> get_nth [1;2;3;4] 3;;

handling errors with patterns

> get_nth [1;2;3;4] 3;;

val it : int option = Some 3

handling errors with patterns

> get_nth [1;2;3;4] 3;;

val it : int option = Some 3

> get_nth [1;2;3;4] 0;;

handling errors with patterns

> get_nth [1;2;3;4] 3;;

val it : int option = Some 3

> get_nth [1;2;3;4] 0;;

val it : int option = None

handling errors with patterns

> get_nth [1;2;3;4] 3;;

val it : int option = Some 3

> get_nth [1;2;3;4] 0;;

val it : int option = None

> get_nth [1;2;3;4] 5;;

handling errors with patterns

> get_nth [1;2;3;4] 3;;

val it : int option = Some 3

> get_nth [1;2;3;4] 0;;

val it : int option = None

> get_nth [1;2;3;4] 5;;

val it : int option = None

handling errors with patterns

> get_nth [1;2;3;4] 3;;

val it : int option = Some 3

> get_nth [1;2;3;4] 0;;

val it : int option = None

> get_nth [1;2;3;4] 5;;

val it : int option = None

> get_nth [1;2;3;4] -2;;

handling errors with patterns

> get_nth [1;2;3;4] 3;;

val it : int option = Some 3

> get_nth [1;2;3;4] 0;;

val it : int option = None

> get_nth [1;2;3;4] 5;;

val it : int option = None

> get_nth [1;2;3;4] -2;;

val it : int option = None

handling errors with patterns

Parser Combinators

Parser Combinators Parser Combinators

• A kind of recursive decent parser.

Parser Combinators

• A kind of recursive decent parser.

• Recursive descent parser:  
A top-down parser built from a set of mutually
recursive procedures where each such procedure
usually implements one of the productions of the
grammar.

Basic Primitives

Basic Primitives

• Input  

type Input = string * bool

Basic Primitives

• Input  

type Input = string * bool

• Output  

type Outcome<'a> =  
| Success of result: 'a * remaining: Input  
| Failure

Basic Primitives Basic Primitives

• A parser is 
type Parser<'a> = Input -> Outcome<‘a>

Basic Primitives

• A parser is 
type Parser<'a> = Input -> Outcome<‘a>

• Keep in mind: a parser is a function.

Two varieties of parser

Two varieties of parser

• Parsers that consume input. Correspond with

grammar terminals.

Two varieties of parser

• Parsers that consume input. Correspond with

grammar terminals.

• Parsers that combine parsers. Correspond with

grammar non-terminals.

Two varieties of parser

• Parsers that consume input. Correspond with

grammar terminals.

• Parsers that combine parsers. Correspond with

grammar non-terminals.

• For flexibility, you can also have parsers that do both.

A very simple terminal parser

A very simple terminal parser

• To parse a given char  
pchar(c: char) : Parser<char>

A very simple terminal parser

• To parse a given char  
pchar(c: char) : Parser<char>

• Notice that the generic type inside <brackets> is the

return type of the parser.

A very simple terminal parser

• To parse a given char  
pchar(c: char) : Parser<char>

• Notice that the generic type inside <brackets> is the

return type of the parser.

• So pchar returns a char.

How to use it

How to use it

• (pchar ‘z’) input

How to use it

• (pchar ‘z’) input

• input must be “prepared” first.

How to use it

• (pchar ‘z’) input

• input must be “prepared” first.

• > let input = "zoo";;  
val input : string = "zoo"  
> let i = prepare input;;  
val i : Input = ("zoo", true)  
> (pchar 'z') i;;  
val it : Outcome<char> = Success ('z',("oo", true))

A very simple combining parser

A very simple combining parser

• To parse two things in sequence:  

pseq : p1:Parser<‘a> -> p2:Parser<‘b> ->

f:('a * 'b -> 'c) -> Parser<‘c>

A very simple combining parser

• To parse two things in sequence:  

pseq : p1:Parser<‘a> -> p2:Parser<‘b> ->

f:('a * 'b -> 'c) -> Parser<‘c>

• It looks more complicated than it is.

A very simple combining parser

• To parse two things in sequence:  

pseq : p1:Parser<‘a> -> p2:Parser<‘b> ->

f:('a * 'b -> 'c) -> Parser<‘c>

• It looks more complicated than it is.

• Let’s look at each part.

A very simple combining parser

A very simple combining parser

• pseq :  
 p1:Parser<‘a>  
 ->  
 p2:Parser<'b>  
 ->  
 f:('a * 'b -> 'c) -> Parser<‘c>

A very simple combining parser

• pseq :  
 p1:Parser<‘a>  
 ->  
 p2:Parser<'b>  
 ->  
 f:('a * 'b -> 'c) -> Parser<‘c>

• p1 is a parser.

A very simple combining parser A very simple combining parser

• pseq :  
 p1:Parser<‘a>  
 ->  
 p2:Parser<'b>  
 ->  
 f:('a * 'b -> 'c) -> Parser<‘c>

A very simple combining parser

• pseq :  
 p1:Parser<‘a>  
 ->  
 p2:Parser<'b>  
 ->  
 f:('a * 'b -> 'c) -> Parser<‘c>

• p2 is a parser.

A very simple combining parser

A very simple combining parser

• pseq :  
 p1:Parser<‘a>  
 ->  
 p2:Parser<'b>  
 ->  
 f:('a * 'b -> 'c) -> Parser<‘c>

A very simple combining parser

• pseq :  
 p1:Parser<‘a>  
 ->  
 p2:Parser<'b>  
 ->  
 f:('a * 'b -> 'c) -> Parser<‘c>

• f is a function that takes the result of p1 and p2 and does

something with it. That something is up to you.

How to use it How to use it

• pseq (pchar ‘z’) (pchar ‘o’) id

How to use it

• pseq (pchar ‘z’) (pchar ‘o’) id

•id is F#’s identity function.

How to use it

• pseq (pchar ‘z’) (pchar ‘o’) id

•id is F#’s identity function.

• Let’s play with this in fsharpi.

More details More details

• It is critical that you read the “Parser Combinators” reading.

More details

• It is critical that you read the “Parser Combinators” reading.

• I suggest that you sit down, uninterrupted, for an hour or

two, and work through the examples in fsharpi.

More details

• It is critical that you read the “Parser Combinators” reading.

• I suggest that you sit down, uninterrupted, for an hour or

two, and work through the examples in fsharpi.

• The reading builds the Parsers.fs library that you are

given for HW7.

Example: brace language Example: brace language

• An expression is a sequence of terms, consisting of at least

one term.

Example: brace language

• An expression is a sequence of terms, consisting of at least

one term.

• A term is either 'aaa', 'bbb', or a brace expression.

Example: brace language

• An expression is a sequence of terms, consisting of at least

one term.

• A term is either 'aaa', 'bbb', or a brace expression.

• A brace expression is '{', followed by an expression,

followed by '}'.

