
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 14: Project Ideas / Evaluation

Announcements

Announcements

No class Thursday

Example: brace language

• An expression is a sequence of terms, consisting of at least

one term.

• A term is either 'aaa', 'bbb', or a brace expression.

• A brace expression is '{', followed by an expression,

followed by '}'.

Lexical vs Dynamic Scope Inspiration for Projects

Scientific Calculator

(using infix expressions)

Scientific Calculator

(using infix expressions)

https://www.google.com/search?q=google+calculator

Logo Interpreter

https://www.calormen.com/jslogo/

Turtle Audio

https://turtle.audio

Regular Expressions

https://swtch.com/~rsc/regexp/regexp1.html

Auto Sentence Diagramming

https://www.npr.org/sections/ed/2014/08/22/341898975/a-picture-of-
language-the-fading-art-of-diagramming-sentences

BASIC

A BNF parser and generator

http://tracery.io/editor/

An algebra solver

https://www.symbolab.com/solver/algebra-calculator

ChucK

http://chuck.cs.princeton.edu/

https://www.ted.com/talks/
ge_wang_the_diy_orchestra_of_the_future#t-237999

Program Evaluation as Reduction 1 + 2 * 3 - 1

(λx.λx.x)(λx.y) (λx.λx.x)(λx.y)⇒

α

(λx.λx.x)(λx.y)

(λx.λa.a)(λb.y)

⇒

α

Goal: alpha-normal form

Goal: alpha-normal form

1. No bound variable uses the same name as any
free variable.

Goal: alpha-normal form

1. No bound variable uses the same name as any
free variable.

2. No bound variable uses the same name as any
other bound variable.

Goal: alpha-normal form

1. No bound variable uses the same name as any
free variable.

2. No bound variable uses the same name as any
other bound variable.

In other words, all variable names are unique.

Parts

e: Expr An expression
b: Set<char> Variable bindings  
r: Map<char,char> Renamings

alphanorm(e: Expr)(b: Set<char>)(r: Map<char,char>)
: Expr*Set<char>

What is passed in; returned

alphanorm(e: Expr)(b: Set<char>)(r: Map<char,char>)
: Expr*Set<char>

What is passed in; returned

alphanorm(e: Expr)(b: Set<char>)(r: Map<char,char>)
: Expr*Set<char>

Note that we want the set of bindings to persist,
therefore it is both passed in and out.

What is passed in; returned

alphanorm(e: Expr)(b: Set<char>)(r: Map<char,char>)
: Expr*Set<char>

Note that we want the set of bindings to persist,
therefore it is both passed in and out.

But the set of renamings is scoped: it is only passed in.

Algorithm

Algorithm

Var(v):

Algorithm

Var(v):
 if there is a renaming rule, rename and return
renamed Var;

Algorithm

Var(v):
 if there is a renaming rule, rename and return
renamed Var;
 otherwise, return original Var 

Algorithm

Var(v):
 if there is a renaming rule, rename and return
renamed Var;
 otherwise, return original Var 

App(e1, e2):

Algorithm

Var(v):
 if there is a renaming rule, rename and return
renamed Var;
 otherwise, return original Var 

App(e1, e2):
 α-norm e1 & e2 and return App(e1, e2) 

Algorithm

Var(v):
 if there is a renaming rule, rename and return
renamed Var;
 otherwise, return original Var 

App(e1, e2):
 α-norm e1 & e2 and return App(e1, e2) 

Abs(v,e):

Algorithm

Var(v):
 if there is a renaming rule, rename and return
renamed Var;
 otherwise, return original Var 

App(e1, e2):
 α-norm e1 & e2 and return App(e1, e2) 

Abs(v,e):
 if v is already bound, add renaming rule, α-norm e,
then return Abs(v’, e’);

Algorithm

Var(v):
 if there is a renaming rule, rename and return
renamed Var;
 otherwise, return original Var 

App(e1, e2):
 α-norm e1 & e2 and return App(e1, e2) 

Abs(v,e):
 if v is already bound, add renaming rule, α-norm e,
then return Abs(v’, e’);
 otherwise, return α-norm e and return Abs(v, e’)

