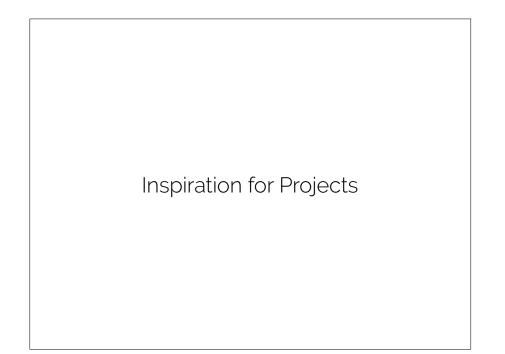
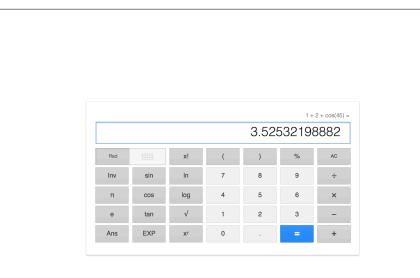
CSCI 334: Principles of Programming Languages

Lecture 14: Project Ideas / Evaluation

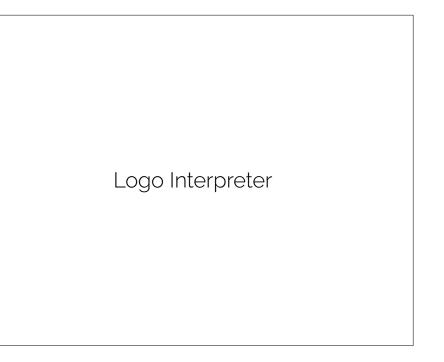

Instructor: Dan Barowy Williams Announcements

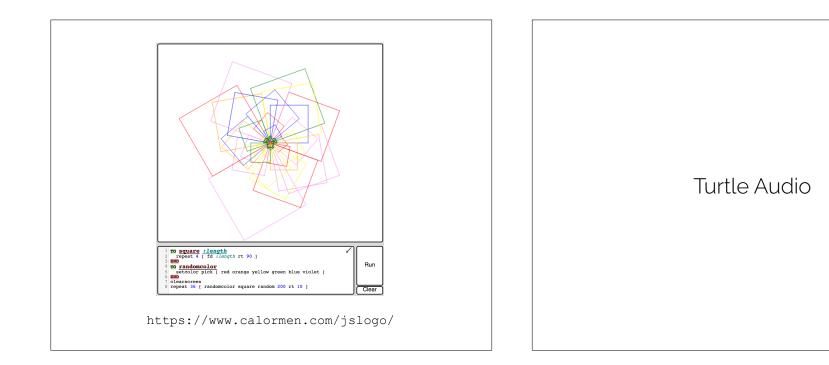
No class Thursday

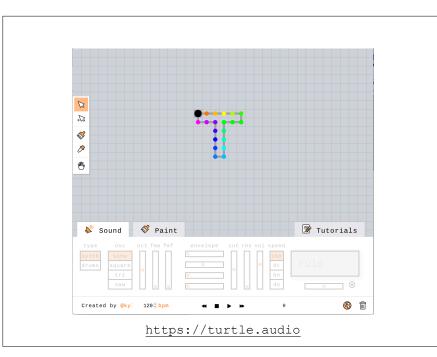
Example: brace language

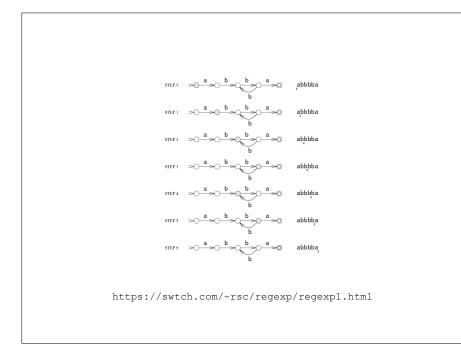

- An *expression* is a sequence of *terms*, consisting of *at least one term*.
- A *term* is either 'aaa', 'bbb', or a *brace expression*.
- A brace expression is '{', followed by an expression, followed by '}'.

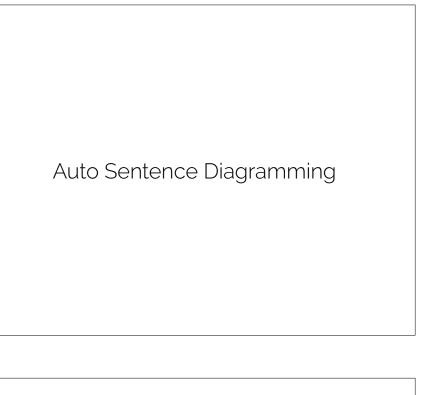
Lexical vs Dynamic Scope

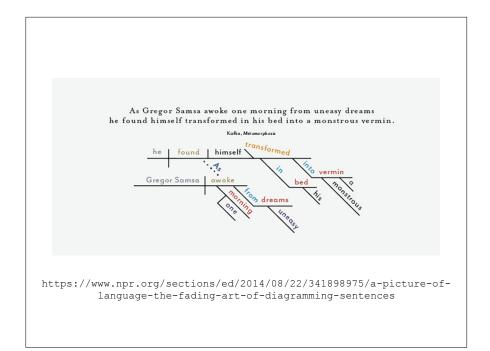


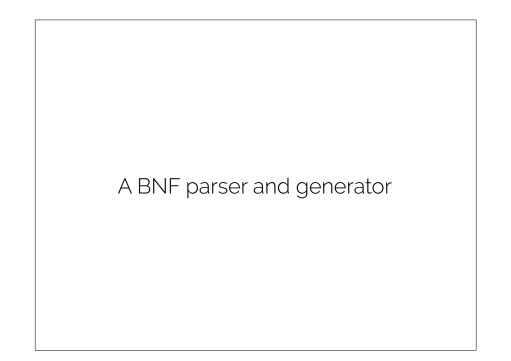

Scientific Calculator

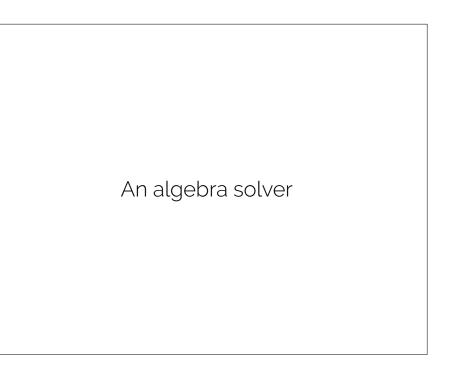

(using infix expressions)

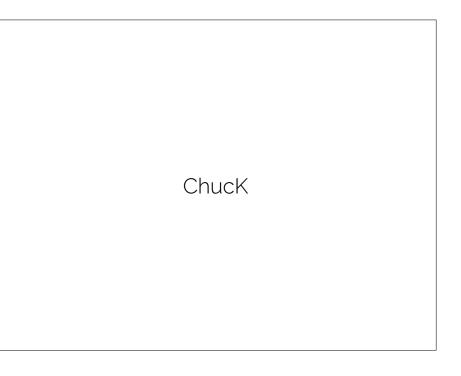

https://www.google.com/search?q=google+calculator



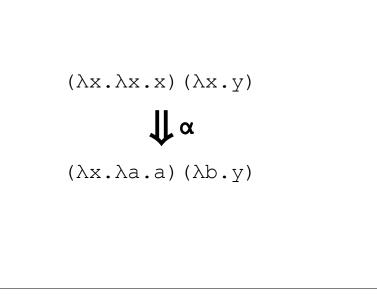







10 IF PR(IP5,3)=1 THEN PRINT "Your victim is badly wounded" :: RETURN 10 PRINT "You killed your victim" 730 PR(IPS, 1)=0 :: IVW=8+IPS 740 VP(IVW)=IKM :: IPS=0 750 RETURN 760 PRINT "Possible commands:" 770 FOR I=1 TO 15 780 PRINT H\$(I) 790 NEXT I 800 RETURN 810 IF IVW<>0 THEN 840 820 PRINT "There is nothing to take here" 830 RETURN gg REION $R_{\rm H0}$ AND IKM<25 THEN PRINT "You cannot take things that you do not see" :: RETURN 850 PRINT "I take the ";V\$(IVW);" for you" 860 B(IBMAX)=IVW 870 IBMAX=IBMAX+1 880 VP(IVW)=0 890 IVW=0 900 RETURN 910 INPUT "What would you like to drop? ":D\$ 920 LNG=LEN (D\$) 930 IVWB=0 940 FOR I=1 TO 12 950 IF D\$=SEG\$(V\$(I), 1, LNG)THEN IVWB=I :: I=12 960 NEXT I 970 IF IVWB<>0 THEN 1000 980 PRINT "I do not understand you"

ty Grammar Login Landset origin: [:[myPlace:#path#]Hine#]] lifne*i;["fmyOd.capitalize# and #mo myPlace was #mood# with #subs #nearby.capitalize# #myPlace.## though the #path#, filling me with %substance#], "substance",["light", "reflections", "n shadow", "darkness", "brightness", merriment"], "mood", ["overcast", "alight", "clear", "bue," shadowed", "liluminated", "path"] "stream", "brook", "path, "ra- forest", "fence", "stone wall"), "move", "jsiral", "wirl", "curl", "danc weave", "meander", "wander", "flow	od#, the tance#", move.ed# away", nist", gaiety", "darkened", Iver", "cool", vine", e", "twine",	expansion origin myPlace-path forest	d the forest was blue w mood mood mood warm and illuminate	d the forest	was blue with	reroll	tep (49804999)
--	---	---	---	--------------	---------------	--------	----------------


 Equations Basic (Linear) 	full pad »	x ⁰	les.	$\sqrt{\Box}$	Vo	5	2	0		÷	×	π
Solve For		$\frac{d}{dx}$	$\frac{\log_{\Box}}{\frac{\partial}{\partial r}}$	1	\int_{0}^{0}	lim	Σ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	θ		x H ₂ O	(9 5 9)
Quadratic Rational		dx	ðx	J	Jo		2	00	0	0 ° g.	1120	(ò - ò)
Biquadratic	5x - 6 = 3x - 8											
Polynomial Radical	Graph »	Evamr	Jaco									64
Logarithmic			1000									
Exponential Absolute	Solution										(eep Pi	acticing
Complex (new)			8 : x=							Sh	ow Step:	\$
Matrix (new) Roots (new)	Steps		5 : x=	-1								
Rational Roots (new)	5x-6		8									
 Inequalities 		Add 6 to both sides 5x - 6 + 6 = 3x - 8 + 6										
 System of Equations 		5x - 6 + 6 = 3x - 8 + 6										
System of Inequalities	Simplify $5x = 3x - 2$											
Basic Operations	Subtra	Subtract 3x from both sides										
	5x - 3x	= 3x -	2-3x									
 Algebraic Properties 	Simplif											
Partial Fractions	2x = -	2										
 Polynomials 	Divide both sides by 2											
 Rational Expressions 	$\frac{2x}{2} = \frac{-1}{2}$	2										
	Simplif	y										
 Sequences 	x = -1											
	click he	re to pro	actice line	ar equai	tions »							


```
SinOsc ge => dac;
while( true )
{
    Math.random2f(30,1000)| => ge.freq;
    .5::second => now;
    I
}
```

http://chuck.cs.princeton.edu/

Program Evaluation as Reduction

Goal: alpha-normal form

- 1. No bound variable uses the same name as any free variable.
- 2. No bound variable uses the same name as any other bound variable.

In other words, all variable names are unique.

What is passed in; returned

alphanorm(e: Expr)(b: Set<char>)(r: Map<char, char>)
 : Expr*Set<char>

Note that we want the set of bindings to persist, therefore it is both *passed in* and *out*.

But the set of renamings is *scoped*: it is only passed in.

Algorithm

Var(v):

if there is a renaming rule, rename and return renamed Var; otherwise, return original Var

App(e1, e2): α-norm e1 & e2 and return App(e1, e2)

Abs(v,e):

if v is already bound, add renaming rule, α -norm e, then return Abs(v', e'); otherwise, return α -norm e and return Abs(v, e')