
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 17: Polymorphic Type Inference

Announcements

Announcements

No “assignment”.

Announcements

No “assignment”.

A short reading (Cardelli) for Monday.

Announcements

Otherwise, work on your project.

No “assignment”.

A short reading (Cardelli) for Monday.

Announcements

Otherwise, work on your project.

Next week: “programming in the large”

No “assignment”.

A short reading (Cardelli) for Monday.

Announcements

Otherwise, work on your project.

Next week: “programming in the large”

http://catb.org/jargon/html/F/foo.html

No “assignment”.

A short reading (Cardelli) for Monday.

Project Timeline

Project Timeline

Project checkin: mostly complete by Nov 29

Project Timeline

Project checkin: mostly complete by Nov 29

Project done: complete by Dec 6

Project Timeline

Project checkin: mostly complete by Nov 29

Project done: complete by Dec 6

Project presentation (5-10 minutes): Dec 11

Topics

Topics

Type inference

Topics

Project Q & A

Type inference

Type Inference

type inference
let apply f x = f x

type inference
let apply f x = f x

1. convert to λ expression

type inference
let apply f x = f x

1. convert to λ expression
2. label with type variables

type inference
let apply f x = f x

1. convert to λ expression
2. label with type variables
3. generate constraints

type inference
let apply f x = f x

1. convert to λ expression
2. label with type variables
3. generate constraints
4. unify

type inference
let apply f x = f x

1. convert to λ expression
2. label with type variables
3. generate constraints
4. unify
5. rename variables

type inference

type inference

Not everybody loves this part of PL.

type inference

Not everybody loves this part of PL.

I hope that you can appreciate the absence of magic.

1. convert to λ expression 1. convert to λ expression
let apply f x = f x

1. convert to λ expression
let apply f x = f x

apply = λf.λx.f x

1. convert to λ expression

λ

let apply f x = f x

apply = λf.λx.f x

1. convert to λ expression

λ

let apply f x = f x

apply = λf.λx.f x

1. convert to λ expression

λ

f

let apply f x = f x

apply = λf.λx.f x

1. convert to λ expression

λ

f

let apply f x = f x

apply = λf.λx.f x

1. convert to λ expression

λ

λf

let apply f x = f x

apply = λf.λx.f x

1. convert to λ expression

λ

λf

let apply f x = f x

apply = λf.λx.f x

1. convert to λ expression

λ

λf

x

let apply f x = f x

apply = λf.λx.f x

1. convert to λ expression

λ

λf

x

let apply f x = f x

apply = λf.λx.f x

1. convert to λ expression

λ

λ

@

f

x

let apply f x = f x

apply = λf.λx.f x

1. convert to λ expression

λ

λ

@

f

x

let apply f x = f x

apply = λf.λx.f x

1. convert to λ expression

λ

λ

@

f

x

f

let apply f x = f x

apply = λf.λx.f x

1. convert to λ expression

λ

λ

@

f

x

f

let apply f x = f x

apply = λf.λx.f x

1. convert to λ expression

λ

λ

@

f

x

f x

let apply f x = f x

apply = λf.λx.f x

1. convert to λ expression

λ

λ

@

f

x

f x

let apply f x = f x

apply = λf.λx.f x

1. convert to λ expression

λ

λ

@

f

x

f x

let apply f x = f x

apply = λf.λx.f x

2. label with type variables

λ

λ

@

f

x

f x

let apply f x = f x

apply = λf.λx.f x

2. label with type variables

λ

λ

@

f

x

f x:a

let apply f x = f x

apply = λf.λx.f x

2. label with type variables

λ

λ

@

f

x

f x:a :b

let apply f x = f x

apply = λf.λx.f x

2. label with type variables

λ

λ

@

f

x

f x:a :b

:c

let apply f x = f x

apply = λf.λx.f x

2. label with type variables

λ

λ

@

f

x

f x:a :b

:b
:c

let apply f x = f x

apply = λf.λx.f x

2. label with type variables

λ

λ

@

f

x

f x:a :b

:b
:c

:d

let apply f x = f x

apply = λf.λx.f x

2. label with type variables

λ

λ

@

f

x

f x:a :b

:a

:b
:c

:d

let apply f x = f x

apply = λf.λx.f x

2. label with type variables

λ

λ

@

f

x

f x:a :b

:a

:b
:c

:d

:e

let apply f x = f x

apply = λf.λx.f x

<expr> ::= <var>

 | λ<var>.<expr>

 | <expr><expr>

variable

function application

abstraction

3. generate constraints

<expr> ::= <var>

 | λ<var>.<expr>

 | <expr><expr>

variable

function application

abstraction

3. generate constraints

Three rules, each corresponding to a kind
of λ expression.

3.1. <var> constraint 3.1. <var> constraint

No constraint.

3.2. abstraction constraint
λ<var>.<expr>

3.2. abstraction constraint

λ

λ<var>.<expr>

3.2. abstraction constraint

λ

λ<var>.<expr>

3.2. abstraction constraint

λ

<var>

λ<var>.<expr>

3.2. abstraction constraint

λ

<var>

λ<var>.<expr>

3.2. abstraction constraint

λ

<var> <expr>

λ<var>.<expr>

3.2. abstraction constraint

λ

<var> <expr>

λ<var>.<expr>

λ

3.2. abstraction constraint

λ

<var> <expr>

λ<var>.<expr>

λ

3.2. abstraction constraint

λ

<var> <expr>

λ<var>.<expr>

λ

:a

3.2. abstraction constraint

λ

<var> <expr>

λ<var>.<expr>

λ

:a

3.2. abstraction constraint

λ

<var> <expr>

λ<var>.<expr>

λ

:a :b

3.2. abstraction constraint

λ

<var> <expr>

λ<var>.<expr>

λ

:a :b

:c

3.2. abstraction constraint

λ

<var> <expr>

λ<var>.<expr>

λ

:a :b

:c

Constraint: If the type of <var> is a and the type of <expr> is b,
and the type of λ is c, then the constraint is c = a → b.

3.2. abstraction constraint

λ

<var> <expr>

λ<var>.<expr>

λ

:a :b

:c

Constraint: If the type of <var> is a and the type of <expr> is b,
and the type of λ is c, then the constraint is c = a → b.

3.2. abstraction constraint

“left triangle rule”

λ

<var> <expr>

λ<var>.<expr>

λ

:a :b

:c

Constraint: If the type of <var> is a and the type of <expr> is b,
and the type of λ is c, then the constraint is c = a → b.

3.3. application constraint
<expr><expr>

3.3. application constraint

@

<expr><expr>

3.3. application constraint

@

<expr><expr>

3.3. application constraint

@

<expr1>

<expr><expr>

3.3. application constraint

@

<expr1>

<expr><expr>

3.3. application constraint

@

<expr1> <expr2>

<expr><expr>

3.3. application constraint

@

<expr1> <expr2>

<expr><expr>

@

3.3. application constraint

@

<expr1> <expr2>

<expr><expr>

@

3.3. application constraint

@

<expr1> <expr2>

<expr><expr>

@

:a

3.3. application constraint

@

<expr1> <expr2>

<expr><expr>

@

:a

3.3. application constraint

@

<expr1> <expr2>

<expr><expr>

@

:a :b

3.3. application constraint

@

<expr1> <expr2>

<expr><expr>

@

:a :b

:c

3.3. application constraint

@

<expr1> <expr2>

<expr><expr>

@

:a :b

:c

Constraint: If the type of <expr1> is a and the type of <expr2> is
b, and the type of @ is c, then the constraint is a = b → c.

3.3. application constraint

@

<expr1> <expr2>

<expr><expr>

@

:a :b

:c

Constraint: If the type of <expr1> is a and the type of <expr2> is
b, and the type of @ is c, then the constraint is a = b → c.

3.3. application constraint

“right triangle rule”

@

<expr1> <expr2>

<expr><expr>

@

:a :b

:c

Constraint: If the type of <expr1> is a and the type of <expr2> is
b, and the type of @ is c, then the constraint is a = b → c.

3. constraints summary

Abstraction: If the type of <var> is a and the type of <expr> is b,
and the type of λ is c, then the constraint is c = a → b.

3. constraints summary

Abstraction: If the type of <var> is a and the type of <expr> is b,
and the type of λ is c, then the constraint is c = a → b.

3. constraints summary

λ

:a :b

:c

Abstraction: If the type of <var> is a and the type of <expr> is b,
and the type of λ is c, then the constraint is c = a → b.

3. constraints summary

λ

:a :b

:c

Abstraction: If the type of <var> is a and the type of <expr> is b,
and the type of λ is c, then the constraint is c = a → b.

Application: If the type of <expr1> is a and the type of <expr2> is
b, and the type of @ is c, then the constraint is a = b → c.

3. constraints summary

λ

:a :b

:c

Abstraction: If the type of <var> is a and the type of <expr> is b,
and the type of λ is c, then the constraint is c = a → b.

Application: If the type of <expr1> is a and the type of <expr2> is
b, and the type of @ is c, then the constraint is a = b → c.

3. constraints summary

λ

:a :b

:c

@

:a :b

:c

Abstraction: If the type of <var> is a and the type of <expr> is b,
and the type of λ is c, then the constraint is c = a → b.

Application: If the type of <expr1> is a and the type of <expr2> is
b, and the type of @ is c, then the constraint is a = b → c.

3. constraints summary

λ

:a :b

:c

@

:a :b

:c

2. label with type variables

λ

λ

@

f

x

f x:a :b

:a

:b
:c

:d

:e

let apply f x = f x

apply = λf.λx.f x

3. generate constraints

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

3. generate constraints

subexpression type constraint

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

3. generate constraints

subexpression type

f

constraint

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

3. generate constraints

subexpression type

f
x

constraint

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

3. generate constraints

subexpression type

f
x

f x

constraint

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

3. generate constraints

subexpression type

f
x

f x
λx.f x

constraint

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

3. generate constraints

subexpression type

f
x

f x
λx.f x

λf.λx.f x

constraint

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

3. generate constraints

subexpression type

f
x

f x
λx.f x

λf.λx.f x

a

constraint

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

3. generate constraints

subexpression type

f
x

f x
λx.f x

λf.λx.f x

a
b

constraint

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

3. generate constraints

subexpression type

f
x

f x
λx.f x

λf.λx.f x

a
b
c

constraint

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

3. generate constraints

subexpression type

f
x

f x
λx.f x

λf.λx.f x

a
b
c
d

constraint

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

3. generate constraints

subexpression type

f
x

f x
λx.f x

λf.λx.f x

a
b
c
d
e

constraint

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

3. generate constraints

subexpression type

f
x

f x
λx.f x

λf.λx.f x

a
b
c
d
e

constraint

n/a

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

3. generate constraints

subexpression type

f
x

f x
λx.f x

λf.λx.f x

a
b
c
d
e

constraint

n/a
n/a

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

3. generate constraints

subexpression type

f
x

f x
λx.f x

λf.λx.f x

a
b
c
d
e

constraint

n/a
n/a
a = b → c

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

3. generate constraints

subexpression type

f
x

f x
λx.f x

λf.λx.f x

a
b
c
d
e

constraint

n/a
n/a
a = b → c
d = b → c

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

3. generate constraints

subexpression type

f
x

f x
λx.f x

λf.λx.f x

a
b
c
d
e

constraint

n/a
n/a
a = b → c
d = b → c
e = a → d

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

4. unify

subexpression type

f
x

f x
λx.f x

λf.λx.f x

b → c
b
c
d
e

constraint

n/a
n/a

d = b → c
e = b → c → d

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

subexpression type

f
x

f x
λx.f x

λf.λx.f x

constraint

4. unify

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

b → c
b
c
b → c
e

n/a
n/a

e = b → c → b → c

subexpression type

f
x

f x
λx.f x

λf.λx.f x

constraint

4. unify

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

b → c
b
c
b → c
b → c → b → c

n/a
n/a

subexpression type

f
x

f x
λx.f x

λf.λx.f x

constraint

n/a
n/a

5. rename variables in alpha order

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

‘a → c
‘a
c
‘a → c
‘a → c → ‘a → c

subexpression type

f
x

f x
λx.f x

λf.λx.f x

‘a → ‘b
‘a
‘b
‘a → ‘b
‘a → ‘b → ‘a → ‘b

constraint

n/a
n/a

5. rename variables in alpha order

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

subexpression type

f
x

f x
λx.f x

λf.λx.f x

‘a → ‘b
‘a
‘b
‘a → ‘b
‘a → ‘b → ‘a → ‘b

constraint

n/a
n/a

5. rename variables in alpha order

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

subexpression type

f
x

f x
λx.f x

λf.λx.f x

‘a → ‘b
‘a
‘b
‘a → ‘b
‘a → ‘b → ‘a → ‘b

constraint

n/a
n/a

5. rename variables in alpha order

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

Is this the right answer?

‘a → ‘b → ‘a → ‘b

Is this the right answer?

‘a → ‘b → ‘a → ‘b

Is this the right answer?

> let apply f x = f x;;

‘a → ‘b → ‘a → ‘b

Is this the right answer?

> let apply f x = f x;;
val apply : f:('a -> 'b) -> x:'a -> 'b

‘a → ‘b → ‘a → ‘b

Is this the right answer?

> let apply f x = f x;;
val apply : f:('a -> 'b) -> x:'a -> 'b

‘a → ‘b → ‘a → ‘b

Lookin’ good!

activity

let f g x = g (g x)

Project Q & A

Next week

Next week

“programming in the large”

Next week

“programming in the large”

object-oriented programming

