
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 17: Polymorphic Type Inference

Announcements

Otherwise, work on your project.

Next week: “programming in the large”

http://catb.org/jargon/html/F/foo.html

No “assignment”.

A short reading (Cardelli) for Monday.

Project Timeline

Project checkin: mostly complete by Nov 29

Project done: complete by Dec 6

Project presentation (5-10 minutes): Dec 11

Topics

Project Q & A

Type inference

Type Inference

type inference
let apply f x = f x

1. convert to λ expression
2. label with type variables
3. generate constraints
4. unify
5. rename variables

type inference

Not everybody loves this part of PL.

I hope that you can appreciate the absence of magic.

1. convert to λ expression

λ

λ

@

f

x

f x

let apply f x = f x

apply = λf.λx.f x

2. label with type variables

λ

λ

@

f

x

f x:a :b

:a

:b
:c

:d

:e

let apply f x = f x

apply = λf.λx.f x

<expr> ::= <var>

 | λ<var>.<expr>

 | <expr><expr>

variable

function application

abstraction

3. generate constraints

Three rules, each corresponding to a kind
of λ expression.

3.1. <var> constraint

No constraint.

3.2. abstraction constraint

“left triangle rule”

λ

<var> <expr>

λ<var>.<expr>

λ

:a :b

:c

Constraint: If the type of <var> is a and the type of <expr> is b,
and the type of λ is c, then the constraint is c = a → b.

3.3. application constraint

“right triangle rule”

@

<expr1> <expr2>

<expr><expr>

@

:a :b

:c

Constraint: If the type of <expr1> is a and the type of <expr2> is
b, and the type of @ is c, then the constraint is a = b → c.

Abstraction: If the type of <var> is a and the type of <expr> is b,
and the type of λ is c, then the constraint is c = a → b.

Application: If the type of <expr1> is a and the type of <expr2> is
b, and the type of @ is c, then the constraint is a = b → c.

3. constraints summary

λ

:a :b

:c

@

:a :b

:c

2. label with type variables

λ

λ

@

f

x

f x:a :b

:a

:b
:c

:d

:e

let apply f x = f x

apply = λf.λx.f x

3. generate constraints

subexpression type

f
x

f x
λx.f x

λf.λx.f x

a
b
c
d
e

constraint

n/a
n/a
a = b → c
d = b → c
e = a → d

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

4. unify

subexpression type

f
x

f x
λx.f x

λf.λx.f x

b → c
b
c
d
e

constraint

n/a
n/a

d = b → c
e = b → c → d

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

subexpression type

f
x

f x
λx.f x

λf.λx.f x

constraint

4. unify

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

b → c
b
c
b → c
e

n/a
n/a

e = b → c → b → c

subexpression type

f
x

f x
λx.f x

λf.λx.f x

constraint

4. unify

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

b → c
b
c
b → c
b → c → b → c

n/a
n/a

subexpression type

f
x

f x
λx.f x

λf.λx.f x

constraint

n/a
n/a

5. rename variables in alpha order

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

‘a → c
‘a
c
‘a → c
‘a → c → ‘a → c

subexpression type

f
x

f x
λx.f x

λf.λx.f x

‘a → ‘b
‘a
‘b
‘a → ‘b
‘a → ‘b → ‘a → ‘b

constraint

n/a
n/a

5. rename variables in alpha order

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

subexpression type

f
x

f x
λx.f x

λf.λx.f x

‘a → ‘b
‘a
‘b
‘a → ‘b
‘a → ‘b → ‘a → ‘b

constraint

n/a
n/a

5. rename variables in alpha order

λ

:a :b

:c @

:a :b

:c

c = a → b a = b → c

Is this the right answer?

> let apply f x = f x;;
val apply : f:('a -> 'b) -> x:'a -> 'b

‘a → ‘b → ‘a → ‘b

Lookin’ good!

activity

let f g x = g (g x)

Project Q & A

Next week

“programming in the large”

object-oriented programming

