
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 20: Object-oriented programming II

Topics

Topics

Resume project activity

Topics

Resume project activity

Dynamic dispatch

Topics

Resume project activity

Dynamic dispatch

C++ (time permitting)

Activity

Read your partners’ project proposal (10 minutes).

Take turns coming up with a program in their
language on paper.

Partner: does this program make sense? If not, what
about your documentation tripped them up?

OO vs Functional Tradeoff OO vs Functional Tradeoff

• OO offers a different kind of extensibility than functional

(or function-oriented) languages.

OO vs Functional Tradeoff

• OO offers a different kind of extensibility than functional

(or function-oriented) languages.

• Suppose you’re modeling a hospital.

OO vs Functional Tradeoff

• OO offers a different kind of extensibility than functional

(or function-oriented) languages.

• Suppose you’re modeling a hospital.

Operation Doctor Nurse Orderly

Print

Pay

Print Doctor Print Nurse Print Orderly

Pay Doctor Pay Nurse Pay Orderly

OO vs Functional Tradeoff

• OO offers a different kind of extensibility than functional

(or function-oriented) languages.

• Suppose you’re modeling a hospital.

Operation Doctor Nurse Orderly

Print

Pay

Print Doctor Print Nurse Print Orderly

Pay Doctor Pay Nurse Pay Orderly

•FP makes it easy to add operations (rows).

OO vs Functional Tradeoff

• OO offers a different kind of extensibility than functional

(or function-oriented) languages.

• Suppose you’re modeling a hospital.

Operation Doctor Nurse Orderly

Print

Pay

Print Doctor Print Nurse Print Orderly

Pay Doctor Pay Nurse Pay Orderly

•FP makes it easy to add operations (rows).

•OOP makes it easy to add data (columns).

Dynamic Dispatch

(the secret to understanding how
Java, Python, Ruby, etc. work)

Ingalls Test for Extensibility

Ingalls Test for Extensibility

• The test is about the ability to extend software after it has

already been designed and written.

Ingalls Test for Extensibility

• The test is about the ability to extend software after it has

already been designed and written.

• E.g., suppose you have a class for a ColoredRectangle.

Ingalls Test for Extensibility

• The test is about the ability to extend software after it has

already been designed and written.

• E.g., suppose you have a class for a ColoredRectangle.

• Can you define a new kind of number (e.g., fractions), use

your new numbers to redefine (subtype) rectangle, and

then ask the system to color the rectangle?

Ingalls Test for Extensibility

• The test is about the ability to extend software after it has

already been designed and written.

• E.g., suppose you have a class for a ColoredRectangle.

• Can you define a new kind of number (e.g., fractions), use

your new numbers to redefine (subtype) rectangle, and

then ask the system to color the rectangle?

• If so, you have an OO system.

Dynamic Dispatch Example

Dynamic Dispatch

Dynamic Dispatch

• Dynamic dispatch is the OO mechanism for polymorphism.

Dynamic Dispatch

• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or

class).

Dynamic Dispatch

• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or

class).

• A method is called (“dispatched”) by sending a “message” to

the “selector” of an object.

Dynamic Dispatch

c.honk()

• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or

class).

• A method is called (“dispatched”) by sending a “message” to

the “selector” of an object.

Dynamic Dispatch

c.honk()

• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or

class).

• A method is called (“dispatched”) by sending a “message” to

the “selector” of an object.

message{

Dynamic Dispatch

c.honk()

• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or

class).

• A method is called (“dispatched”) by sending a “message” to

the “selector” of an object.

object

message{
Dynamic Dispatch

c.honk()

• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or

class).

• A method is called (“dispatched”) by sending a “message” to

the “selector” of an object.

object selector

message{

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

Car object

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class Template

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

1 Call c.honk();

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

1 Call c.honk();

2

2 honk message dispatched to c

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

1 Call c.honk();

2

2 honk message dispatched to c

3 honk message forwarded to Car

3
color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

1 Call c.honk();

2

2 honk message dispatched to c

3 honk message forwarded to Car

4 honk message lookup in method dictionary

3

4

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

1 Call c.honk();

2

2 honk message dispatched to c

3 honk message forwarded to Car

4 honk message lookup in method dictionary

3

4

5 honk executed.

5

Inheritance

• One small change enables inheritance.

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

Inheritance

• One small change enables inheritance.

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

Superclass

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
…

Superclass

codehonk

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
…

Superclass

no honk method

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
…

1 Call c.honk();

Superclass

no honk method

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
…

1 Call c.honk();

2

2 honk message dispatched to c

Superclass

no honk method

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
…

1 Call c.honk();

2

2 honk message dispatched to c

3 honk message forwarded to Car

3

Superclass

no honk method

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
…

1 Call c.honk();

2

2 honk message dispatched to c

3 honk message forwarded to Car

4 honk message lookup in method dictionary

3

4

Superclass

no honk method

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
…

1 Call c.honk();

2

2 honk message dispatched to c

3 honk message forwarded to Car

4 honk message lookup in method dictionary

3

4

5 algorithm recurses on superclass

5
Superclass

no honk method

Activity

Draw the dynamic dispatch data structures for
Honks, Car, and Goose.

C++
Efficient object oriented programming.

History of C++ History of C++
• Began originally in 1979 with Bjarne

Stroustrup’s “C with Classes”

History of C++
• Began originally in 1979 with Bjarne

Stroustrup’s “C with Classes”

• C++ released in 1983 with most of the
major features we know today.

History of C++
• Began originally in 1979 with Bjarne

Stroustrup’s “C with Classes”

• C++ released in 1983 with most of the
major features we know today.

• Design was strongly influenced by
Simula, but Simula was too slow.
Stroustrup wanted a fast, portable,
language with object-oriented
features. C had everything but OO.

History of C++
• Began originally in 1979 with Bjarne

Stroustrup’s “C with Classes”

• C++ released in 1983 with most of the
major features we know today.

• Design was strongly influenced by
Simula, but Simula was too slow.
Stroustrup wanted a fast, portable,
language with object-oriented
features. C had everything but OO.

• C++ is largely a superset of C. Until C+
+98, every C program was a valid C++
program. Still relatively easy to convert
C to C++.

History of C++
• Began originally in 1979 with Bjarne

Stroustrup’s “C with Classes”

• C++ released in 1983 with most of the
major features we know today.

• Design was strongly influenced by
Simula, but Simula was too slow.
Stroustrup wanted a fast, portable,
language with object-oriented
features. C had everything but OO.

• C++ is largely a superset of C. Until C+
+98, every C program was a valid C++
program. Still relatively easy to convert
C to C++.

• Major driving philosophy: “only pay for
what you use.”

History of C++
• Began originally in 1979 with Bjarne

Stroustrup’s “C with Classes”

• C++ released in 1983 with most of the
major features we know today.

• Design was strongly influenced by
Simula, but Simula was too slow.
Stroustrup wanted a fast, portable,
language with object-oriented
features. C had everything but OO.

• C++ is largely a superset of C. Until C+
+98, every C program was a valid C++
program. Still relatively easy to convert
C to C++.

• Major driving philosophy: “only pay for
what you use.”

• C++ has many features. We will cover
only the essential ones here.

C++ example

