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Resume project activity

Dynamic dispatch

C++ (time permitting)

Activity

Read your partners’ project proposal (10 minutes). 

Take turns coming up with a program in their 
language on paper. 

Partner: does this program make sense?  If not, what 
about your documentation tripped them up?
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• OO offers a different kind of extensibility than functional 

(or function-oriented) languages.

• Suppose you’re modeling a hospital.

Operation Doctor Nurse Orderly

Print

Pay

Print Doctor Print Nurse Print Orderly

Pay Doctor Pay Nurse Pay Orderly

•FP makes it easy to add operations (rows).

•OOP makes it easy to add data (columns).



Dynamic Dispatch

(the secret to understanding how 
Java, Python, Ruby, etc. work)
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Ingalls Test for Extensibility

• The test is about the ability to extend software after it has 

already been designed and written.

• E.g., suppose you have a class for a ColoredRectangle.

• Can you define a new kind of number (e.g., fractions), use 

your new numbers to redefine (subtype) rectangle, and 

then ask the system to color the rectangle?

• If so, you have an OO system.

Dynamic Dispatch Example
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• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or 

class).

• A method is called (“dispatched”) by sending a “message” to 

the “selector” of an object.

object
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Dynamic Dispatch
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• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or 

class).

• A method is called (“dispatched”) by sending a “message” to 

the “selector” of an object.

object selector

message{
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5
Superclass

no honk method



Activity

Draw the dynamic dispatch data structures for 
Honks, Car, and Goose.

C++
Efficient object oriented programming.
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History of C++
• Began originally in 1979 with Bjarne 

Stroustrup’s “C with Classes”

• C++ released in 1983 with most of the 
major features we know today.

• Design was strongly influenced by 
Simula, but Simula was too slow. 
Stroustrup wanted a fast, portable, 
language with object-oriented 
features.  C had everything but OO.

• C++ is largely a superset of C.   Until C+
+98, every C program was a valid C++ 
program.  Still relatively easy to convert 
C to C++.

• Major driving philosophy: “only pay for 
what you use.”

• C++ has many features. We will cover 
only the essential ones here.

C++ example


