
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 15: Type Inference

Announcements

Announcements

No class Thursday

Announcements

No class Thursday

I am out all week; email me if you need
anything, but expect delays in my responses

Announcements

No class Thursday

I am out all week; email me if you need
anything, but expect delays in my responses

HW7 solutions

Announcements

No class Thursday

I am out all week; email me if you need
anything, but expect delays in my responses

HW7 solutions

Exam resubmissions: no later than tomorrow

Topics Topics

Discuss: Graham / Gabriel readings

Topics

Review alpha normal form

Discuss: Graham / Gabriel readings

Topics

Review alpha normal form

The importance of technical interviews

Discuss: Graham / Gabriel readings

Topics

Review alpha normal form

The importance of technical interviews

Type checking and type inference

Discuss: Graham / Gabriel readings

Discussion

0

2

4

6

8

10

12

14

16

18

same different

Graham vs Gabriel: same lesson or different?

0
1
2
3
4
5
6
7
8
9

10

love-
love

love-
am

biv
alen

t

love-
hate

am
biv

alen
t-lo

ve

am
biv

alen
t-a

mbiva
lent

am
biv

alen
t-h

ate

hate
-lo

ve

hate
-ambiva

lent

hate
-hate

How do you feel about programming-CS?

Alpha Normal Form

(λx.λx.x)(λx.y)

(λx.λx.x)(λx.y)⇒

α

(λx.λx.x)(λx.y)

(λx.λa.a)(λb.y)
⇒

α

Goal: alpha-normal form Goal: alpha-normal form

1. No bound variable uses the same name as any
free variable.

Goal: alpha-normal form

1. No bound variable uses the same name as any
free variable.

2. No bound variable uses the same name as any
other bound variable.

Goal: alpha-normal form

1. No bound variable uses the same name as any
free variable.

2. No bound variable uses the same name as any
other bound variable.

In other words, all variable names are unique.

Parts

e: Expr An expression
b: Set<char> Variable bindings  
r: Map<char,char> Renamings

alphanorm(e: Expr)(b: Set<char>)(r: Map<char,char>)
: Expr*Set<char>

What is passed in; returned

alphanorm(e: Expr)(b: Set<char>)(r: Map<char,char>)
: Expr*Set<char>

What is passed in; returned

alphanorm(e: Expr)(b: Set<char>)(r: Map<char,char>)
: Expr*Set<char>

Note that we want the set of bindings to persist,
therefore it is both passed in and out.

What is passed in; returned

alphanorm(e: Expr)(b: Set<char>)(r: Map<char,char>)
: Expr*Set<char>

Note that we want the set of bindings to persist,
therefore it is both passed in and out.

But the set of renamings is scoped: it is only passed in.

Algorithm Algorithm

Var(v):

Algorithm

Var(v):
 if there is a renaming rule, rename and return
renamed Var;

Algorithm

Var(v):
 if there is a renaming rule, rename and return
renamed Var;
 otherwise, return original Var 

Algorithm

Var(v):
 if there is a renaming rule, rename and return
renamed Var;
 otherwise, return original Var 

App(e1, e2):

Algorithm

Var(v):
 if there is a renaming rule, rename and return
renamed Var;
 otherwise, return original Var 

App(e1, e2):
 α-norm e1 & e2 and return App(e1, e2) 

Algorithm

Var(v):
 if there is a renaming rule, rename and return
renamed Var;
 otherwise, return original Var 

App(e1, e2):
 α-norm e1 & e2 and return App(e1, e2) 

Abs(v,e):

Algorithm

Var(v):
 if there is a renaming rule, rename and return
renamed Var;
 otherwise, return original Var 

App(e1, e2):
 α-norm e1 & e2 and return App(e1, e2) 

Abs(v,e):
 if v is already bound, add renaming rule, α-norm e,
then return Abs(v’, e’);

Algorithm

Var(v):
 if there is a renaming rule, rename and return
renamed Var;
 otherwise, return original Var 

App(e1, e2):
 α-norm e1 & e2 and return App(e1, e2) 

Abs(v,e):
 if v is already bound, add renaming rule, α-norm e,
then return Abs(v’, e’);
 otherwise, return α-norm e and return Abs(v, e’)

Technical Interviews

Read: interview
excerpt with Peter

Norvig.

Technical Interviews

“One of the interesting
things we found, when
trying to predict how well
somebody we’ve hired is
going to perform when we
evaluate them a year or two
later, is one of the best
indicators of success within
the company was getting
the worst possible score on
one of your interviews.”

ANXIETY

BAD
QUESTIONS

PERSONALITY
CONFLICT

ETC.

Abandon all hope ye who enter here?

“It’s more you want to get a feeling for how this
person thinks and how they work together, so do
they know the basic ideas? Can they say, “Well,
in order to solve this, I need to know A, B,
and C,” and they start putting it together. And I
think you can demonstrate that while still failing
on a puzzle. You can say, “Well, here’s how I
attack this puzzle. Well, I first think about
this. Then I do that. Then I do that, but
geez, here’s this part I don’t quite
understand.” For some people that little part
clicks and for some it doesn’t. And you can do
fine if it doesn’t click as long as you’ve
demonstrated the basic competency and
fluency in how you think about it.”

Abandon all hope ye who enter here? This class

This class

Programming languages capture the essential parts of
problem-solving on a machine.

This class

This class is about learning how to talk about a problem.

Programming languages capture the essential parts of
problem-solving on a machine.

This class

This class is about learning how to talk about a problem.

Programming languages capture the essential parts of
problem-solving on a machine.

Dirty secret: most other CS classes are about that too.

Technical Interviews

Takeaways

Technical Interviews

•Technical interviews are a noisy process at best.

Takeaways

Technical Interviews

•Technical interviews are a noisy process at best.

•Google—and most other tech firms—know this.

Takeaways

Technical Interviews

•Technical interviews are a noisy process at best.

•Google—and most other tech firms—know this.

•Do your best to eliminate the noise.

Takeaways

Technical Interviews

•Technical interviews are a noisy process at best.

•Google—and most other tech firms—know this.

•Do your best to eliminate the noise.

• If you “fail,” remember to learn from your mistakes and try

again.

Takeaways

Technical Interviews

•Technical interviews are a noisy process at best.

•Google—and most other tech firms—know this.

•Do your best to eliminate the noise.

• If you “fail,” remember to learn from your mistakes and try

again.

• “Just do good work.”

Takeaways

Mental Technique #5

“Just do good work.”

Mental Technique #5

“Just do good work.”
• Advice from a favorite professor of mine (David Jensen).

Mental Technique #5

“Just do good work.”
• Advice from a favorite professor of mine (David Jensen).

• You have limited control over what other people think about you.

Mental Technique #5

“Just do good work.”
• Advice from a favorite professor of mine (David Jensen).

• You have limited control over what other people think about you.
• You have a lot of control about what you think about yourself.

Mental Technique #5

“Just do good work.”
• Advice from a favorite professor of mine (David Jensen).

• You have limited control over what other people think about you.
• You have a lot of control about what you think about yourself.

• Set your own standards and make an effort to meet or exceed

them.

Mental Technique #5

“Just do good work.”
• Advice from a favorite professor of mine (David Jensen).

• You have limited control over what other people think about you.
• You have a lot of control about what you think about yourself.

• Set your own standards and make an effort to meet or exceed

them.
• Care about your work.

Mental Technique #5

“Just do good work.”
• Advice from a favorite professor of mine (David Jensen).

• You have limited control over what other people think about you.
• You have a lot of control about what you think about yourself.

• Set your own standards and make an effort to meet or exceed

them.
• Care about your work.

• This is a “gumption-building” activity.

Mental Technique #5

“Just do good work.”
• Advice from a favorite professor of mine (David Jensen).

• You have limited control over what other people think about you.
• You have a lot of control about what you think about yourself.

• Set your own standards and make an effort to meet or exceed

them.
• Care about your work.

• This is a “gumption-building” activity.

• It makes nearly all work seem “worth it” because you’re not just

doing the work; “the real cycle you’re working on is a cycle

called ‘yourself.’”

Mental Technique #5

“Just do good work.”
• Advice from a favorite professor of mine (David Jensen).

• You have limited control over what other people think about you.
• You have a lot of control about what you think about yourself.

• Set your own standards and make an effort to meet or exceed

them.
• Care about your work.

• This is a “gumption-building” activity.

• It makes nearly all work seem “worth it” because you’re not just

doing the work; “the real cycle you’re working on is a cycle

called ‘yourself.’”

• People will inevitably notice your positive, can-do attitude.

Type checking & type inference Type checking & type inference

Finally—cool things enabled
by the lambda calculus!

Type checking

let f(x:int) : int = “hello” + x

(or, “how does ML know that my expression is wrong?”)

Type checking

let f(x:int) : int = “hello” + x

(or, “how does ML know that my expression is wrong?”)

 let f(x:int) : int = "hello" + x;;
 -------------------------------^

stdin(1,32): error FS0001: The type 'int' does not
match the type 'string'

Type checking

step 1: convert into lambda form

Type checking

let f(x:int) : int = “hello” + x

step 1: convert into lambda form

Type checking

let f(x:int) : int = “hello” + x

f = λx.“hello ” + x convert into λ expression

step 1: convert into lambda form

Type checking

let f(x:int) : int = “hello” + x

f = λx.“hello ” + x

f = λx.((+ “hello ”) x)

convert into λ expression

assume + = λx.λy.[[x + y]]

step 1: convert into lambda form

Type checking

let f(x:int) : int = “hello” + x

f = λx.“hello ” + x

f = λx.((+ “hello ”) x)

convert into λ expression

assume + = λx.λy.[[x + y]]

step 1: convert into lambda form

The purpose of this step is to make all of the parts
of an expression clear

Type checking

step 2: generate parse tree

Type checking

f = λx.((+ “hello ”) x)

step 2: generate parse tree

Type checking

f = λx.((+ “hello ”) x)

f has form λx.((EE)E)

step 2: generate parse tree

Type checking

f = λx.((+ “hello ”) x)

f has form λx.((EE)E)

step 2: generate parse tree

λ

Type checking

f = λx.((+ “hello ”) x)

f has form λx.((EE)E)

step 2: generate parse tree

λ

Type checking

f = λx.((+ “hello ”) x)

f has form λx.((EE)E)

step 2: generate parse tree

λ

x

Type checking

f = λx.((+ “hello ”) x)

f has form λx.((EE)E)

step 2: generate parse tree

λ

x

Type checking

f = λx.((+ “hello ”) x)

f has form λx.((EE)E)

step 2: generate parse tree

λ

@x

Type checking

f = λx.((+ “hello ”) x)

f has form λx.((EE)E)

step 2: generate parse tree

λ

@x

Type checking

f = λx.((+ “hello ”) x)

f has form λx.((EE)E)

step 2: generate parse tree

λ

@

@

x

Type checking

f = λx.((+ “hello ”) x)

f has form λx.((EE)E)

step 2: generate parse tree

λ

@

@

x

Type checking

f = λx.((+ “hello ”) x)

f has form λx.((EE)E)

step 2: generate parse tree

λ

@

@

x

+

Type checking

f = λx.((+ “hello ”) x)

f has form λx.((EE)E)

step 2: generate parse tree

λ

@

@

x

+

Type checking

f = λx.((+ “hello ”) x)

f has form λx.((EE)E)

step 2: generate parse tree

λ

@

@

x

+ “hello ”

Type checking

f = λx.((+ “hello ”) x)

f has form λx.((EE)E)

step 2: generate parse tree

λ

@

@

x

+ “hello ”

Type checking

f = λx.((+ “hello ”) x)

f has form λx.((EE)E)

step 2: generate parse tree

λ

@

@

x

x

+ “hello ”

Type checking

f = λx.((+ “hello ”) x)

f has form λx.((EE)E)

step 2: generate parse tree

λ

@

@

x

x

+ “hello ”

read “:” as “has type”

step 3: label parse tree with types

λ

@

@

x

x

+ “hello ”

Type checking

read “:” as “has type”

step 3: label parse tree with types

:int → int → int

λ

@

@

x

x

+ “hello ”

Type checking

read “:” as “has type”

step 3: label parse tree with types

:int → int → int

λ

@

@

x

x

+ “hello ” :string

Type checking

read “:” as “has type”

step 3: label parse tree with types

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int → int

Type checking

read “:” as “has type”

step 3: label parse tree with types

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int
:int → int

Type checking

read “:” as “has type”

step 3: label parse tree with types

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int

:int → int

Type checking

read “:” as “has type”

step 3: label parse tree with types

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int:int

:int → int

Type checking

read “:” as “has type”

step 3: label parse tree with types

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int:int

:int → int

:int → int

Type checking

step 4: check that types are used consistently

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int

:int → int

:int

:int → int

Type checking

step 4: check that types are used consistently

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int

:int → int

:int

1. Start at the leaves

:int → int

Type checking

step 4: check that types are used consistently

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int

:int → int

:int

1. Start at the leaves

2. Do type mismatches arise? 
Yes = type error 
No = type safe

:int → int

Type checking

step 4: check that types are used consistently

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int

:int → int

:int

1. Start at the leaves

2. Do type mismatches arise? 
Yes = type error 
No = type safe

3. if yes, stop and 
report first 
mismatch

:int → int

Type checking

step 4: check that types are used consistently

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int

:int → int

:int

1. Start at the leaves

2. Do type mismatches arise? 
Yes = type error 
No = type safe

3. if yes, stop and 
report first 
mismatch

int → int → int @ string

:int → int

Type checking

step 4: check that types are used consistently

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int

:int → int

:int

1. Start at the leaves

2. Do type mismatches arise? 
Yes = type error 
No = type safe

3. if yes, stop and 
report first 
mismatch

int → int → int @ string

YES, TYPE ERROR

:int → int

Type checking

Type inference

notice that we had a typed expression

let f(x:int) : int = “hello ” + x

Type inference

notice that we had a typed expression

let f(x:int) : int = “hello ” + x

what if, instead, we had

Type inference

notice that we had a typed expression

let f(x:int) : int = “hello ” + x

what if, instead, we had

let f x = “hello ” + x

Type inference

notice that we had a typed expression

let f(x:int) : int = “hello ” + x

what if, instead, we had

let f x = “hello ” + x

?

Hinley-Milner algorithm

J. Roger Hindley Robin Milner

Hinley-Milner algorithm

J. Roger Hindley Robin Milner

• Hindley and Milner 
invented algorithm
independently.

Hinley-Milner algorithm

J. Roger Hindley Robin Milner

• Hindley and Milner 
invented algorithm
independently.

• Infers types from known 
data types and
operations used.

Hinley-Milner algorithm

J. Roger Hindley Robin Milner

• Hindley and Milner 
invented algorithm
independently.

• Infers types from known 
data types and
operations used.

• Depends on a step
called “unification”.

Hinley-Milner algorithm

J. Roger Hindley Robin Milner

• Hindley and Milner 
invented algorithm
independently.

• Infers types from known 
data types and
operations used.

• Depends on a step
called “unification”.

• I will demonstrate
informal method for
unification; works for
small examples

Hinley-Milner algorithm

Has three main phases:

Hinley-Milner algorithm

1. Assign known types to each subexpression

Has three main phases:

Hinley-Milner algorithm

1. Assign known types to each subexpression

2. Generate type constraints based on rules of λ calculus:

Has three main phases:

Hinley-Milner algorithm

1. Assign known types to each subexpression

2. Generate type constraints based on rules of λ calculus:

a. Abstraction constraints

Has three main phases:

Hinley-Milner algorithm

1. Assign known types to each subexpression

2. Generate type constraints based on rules of λ calculus:

a. Abstraction constraints

b. Application constraints

Has three main phases:

Hinley-Milner algorithm

1. Assign known types to each subexpression

2. Generate type constraints based on rules of λ calculus:

a. Abstraction constraints

b. Application constraints

3. Solve type constraints using unification.

Has three main phases:

Type inference

step 1: label parse tree with known/unknown types

λ

@

@

x

x

+ 5

Type inference

let f x = 5 + x

step 1: label parse tree with known/unknown types

λ

@

@

x

x

+ 5

Type inference

let f x = 5 + x

step 1: label parse tree with known/unknown types

λ

@

@

x

x

+ 5

I am using the example
from book so that you

can follow along at home!

Type inference

let f x = 5 + x

f = λx.((+ 5) x)

step 1: label parse tree with known/unknown types

λ

@

@

x

x

+ 5

I am using the example
from book so that you

can follow along at home!

Type inference

let f x = 5 + x

f = λx.((+ 5) x)

step 1: label parse tree with known/unknown types

λ

@

@

x

x

+ 5
:int → int → int

I am using the example
from book so that you

can follow along at home!

Type inference

let f x = 5 + x

f = λx.((+ 5) x)

step 1: label parse tree with known/unknown types

λ

@

@

x

x

+ 5
:int → int → int

:int

I am using the example
from book so that you

can follow along at home!

Type inference

let f x = 5 + x

f = λx.((+ 5) x)

step 1: label parse tree with known/unknown types

λ

@

@

x

x

+ 5
:int → int → int

:int

:r

I am using the example
from book so that you

can follow along at home!

Type inference

let f x = 5 + x

f = λx.((+ 5) x)

step 1: label parse tree with known/unknown types

λ

@

@

x

x

+ 5
:int → int → int

:int

:r :s

I am using the example
from book so that you

can follow along at home!

Type inference

let f x = 5 + x

f = λx.((+ 5) x)

step 1: label parse tree with known/unknown types

λ

@

@

x

x

+ 5
:int → int → int

:int

:r :s

:s

I am using the example
from book so that you

can follow along at home!

Type inference

let f x = 5 + x

f = λx.((+ 5) x)

step 1: label parse tree with known/unknown types

λ

@

@

x

x

+ 5
:int → int → int

:int

:r :s

:t
:s

I am using the example
from book so that you

can follow along at home!

Type inference

let f x = 5 + x

f = λx.((+ 5) x)

step 1: label parse tree with known/unknown types

λ

@

@

x

x

+ 5
:int → int → int

:int

:r :s

:t

:u

:s

I am using the example
from book so that you

can follow along at home!

it is often helpful to have types in tabular form

subexpression type

Type inference

it is often helpful to have types in tabular form

subexpression type

+

Type inference

it is often helpful to have types in tabular form

subexpression type

+ int → int → int

Type inference

it is often helpful to have types in tabular form

subexpression type

+
5

int → int → int

Type inference

it is often helpful to have types in tabular form

subexpression type

+
5

int → int → int
int

Type inference

it is often helpful to have types in tabular form

subexpression type

+
5

(+5)

int → int → int
int

Type inference

it is often helpful to have types in tabular form

subexpression type

+
5

(+5)

int → int → int
int
r

Type inference

it is often helpful to have types in tabular form

subexpression type

+
5

(+5)
x

int → int → int
int
r

Type inference

it is often helpful to have types in tabular form

subexpression type

+
5

(+5)
x

int → int → int
int
r
s

Type inference

it is often helpful to have types in tabular form

subexpression type

+
5

(+5)
x

(+5)x

int → int → int
int
r
s

Type inference

it is often helpful to have types in tabular form

subexpression type

+
5

(+5)
x

(+5)x

int → int → int
int
r
s
t

Type inference

it is often helpful to have types in tabular form

subexpression type

+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t

Type inference

it is often helpful to have types in tabular form

subexpression type

+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

Type inference

step 2: generate type constraints using λ calculus

E ::= x

 | λx.E

 | EE

variable

function application

abstraction

Type inference

step 2: generate type constraints using λ calculus

Abstraction rule: If the type of x is a and the type of E is b, and the
type of λx.E is c, then the constraint is c = a → b.

E ::= x

 | λx.E

 | EE

variable

function application

abstraction

Type inference

step 2: generate type constraints using λ calculus

Abstraction rule: If the type of x is a and the type of E is b, and the
type of λx.E is c, then the constraint is c = a → b.

E ::= x

 | λx.E

 | EE

variable

function application

abstraction

Application rule: If the type of E1 is a and the type of E2 is b, and
the type of E1E2 is c, then the constraint is a = b → c.

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

constraint

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

constraint
n/a

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

constraint
n/a
n/a

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

constraint
n/a
n/a
int → int → int = int → r

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a
r = s → t

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a
r = s → t
u = s → t

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a
r = s → t
u = s → t

step 3: unify

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a
r = s → t
u = s → t

step 3: unify

Start with the topmost unknown. What do we know about r?

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a
r = s → t
u = s → t

step 3: unify

Start with the topmost unknown. What do we know about r?
int → int → int = int → r

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a
r = s → t
u = s → t

step 3: unify

Start with the topmost unknown. What do we know about r?

int → int → int = int → r
r = int → int

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a
r = s → t
u = s → t

step 3: unify

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a
r = s → t
u = s → t

step 3: unify

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a
r = s → t
u = s → t

step 3: unify

Eliminate r from the constraint.

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a
r = s → t
u = s → t

step 3: unify

Eliminate r from the constraint.

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s
t
u

constraint
n/a
n/a
int → int → int = int → r
n/a
r = s → t
u = s → t

step 3: unify

Eliminate r from the constraint.

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s
t
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = s → t
u = s → t

step 3: unify

Eliminate r from the constraint.

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s
t
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = s → t
u = s → t

step 3: unify

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s
t
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = s → t
u = s → t

step 3: unify

What do we know about s and t?

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s
t
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = s → t
u = s → t

step 3: unify

What do we know about s and t?

int → int = s → t

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s
t
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = s → t
u = s → t

step 3: unify

What do we know about s and t?

int → int = s → t
s = int

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s
t
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = s → t
u = s → t

step 3: unify

What do we know about s and t?

int → int = s → t
s = int
t = int

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = s → t
u = s → t

step 3: unify

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = s → t
u = s → t

step 3: unify

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = s → t
u = s → t

step 3: unify

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = s → t
u = s → t

step 3: unify

Eliminate s and t from constraint.

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = s → t
u = s → t

step 3: unify

Eliminate s and t from constraint.

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = s → t
u = s → t

step 3: unify

Eliminate s and t from constraint.

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = int → int
u = int → int

step 3: unify

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = int → int
u = int → int

step 3: unify

What do we know about u?

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = int → int
u = int → int

step 3: unify

What do we know about u?

u = int → int

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u = int → int

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = int → int
u = int → int

step 3: unify

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u = int → int

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = int → int
u = int → int

step 3: unify

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u = int → int

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = int → int
u = int → int

step 3: unify

Type inference

Eliminate u from constraint.

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u = int → int

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = int → int
u = int → int

step 3: unify

Type inference

Eliminate u from constraint.

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u = int → int

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = int → int
int → int = int → int

step 3: unify

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u = int → int

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = int → int
int → int = int → int

step 3: unify

Done when there is nothing left to do.

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u = int → int

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = int → int
int → int = int → int

step 3: unify

Done when there is nothing left to do.

Sometimes unknown types remain.

Type inference

subexpression type
+
5

(+5)
x

(+5)x
λx.((+ 5) x)

int → int → int
int
r = int → int
s = int
t = int
u = int → int

constraint
n/a
n/a
int→int→int = int→int→int
n/a
int → int = int → int
int → int = int → int

step 3: unify

Done when there is nothing left to do.

Sometimes unknown types remain.

Type inference

This means that the function is polymorphic. More next class!

Completed type inference

let f x = 5 + x

f = λx.((+ 5) x)

λ

@

@

x

x

+ 5
:int → int → int

:int

:int → int
:int

:int

:int → int

:int

