
CSCI 334: 
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 15: Type Inference

Announcements

No class Thursday

I am out all week; email me if you need 
anything, but expect delays in my responses

HW7 solutions

Exam resubmissions: no later than tomorrow

Topics

Review alpha normal form

The importance of technical interviews

Type checking and type inference

Discuss: Graham / Gabriel readings

Discussion
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Graham vs Gabriel: same lesson or different?
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How do you feel about programming-CS?

Alpha Normal Form

(λx.λx.x)(λx.y)

(λx.λa.a)(λb.y)

⇒

α



Goal: alpha-normal form

1. No bound variable uses the same name as any 
free variable. 

2. No bound variable uses the same name as any 
other bound variable.

In other words, all variable names are unique.

Parts

e: Expr           An expression 
b: Set<char>      Variable bindings  
r: Map<char,char> Renamings

alphanorm(e: Expr)(b: Set<char>)(r: Map<char,char>) 
: Expr*Set<char> 

What is passed in; returned

alphanorm(e: Expr)(b: Set<char>)(r: Map<char,char>) 
: Expr*Set<char> 

Note that we want the set of bindings to persist, 
therefore it is both passed in and out.

But the set of renamings is scoped: it is only passed in.

Algorithm

Var(v): 
  if there is a renaming rule, rename and return 
renamed Var; 
  otherwise, return original Var 

App(e1, e2): 
  α-norm e1 & e2 and return App(e1, e2) 

Abs(v,e): 
  if v is already bound, add renaming rule, α-norm e, 
then return Abs(v’, e’); 
  otherwise, return α-norm e and return Abs(v, e’)



Technical Interviews

Read: interview 
excerpt with Peter 

Norvig.

Technical Interviews

“One of the interesting 
things we found, when 
trying to predict how well 
somebody we’ve hired is 
going to perform when we 
evaluate them a year or two 
later, is one of the best 
indicators of success within 
the company was getting 
the worst possible score on 
one of your interviews.”

ANXIETY



BAD 
QUESTIONS

PERSONALITY 
CONFLICT

ETC.

“It’s more you want to get a feeling for how this 
person thinks and how they work together, so do 
they know the basic ideas? Can they say, “Well, 
in order to solve this, I need to know A, B, 
and C,” and they start putting it together. And I 
think you can demonstrate that while still failing 
on a puzzle. You can say, “Well, here’s how I 
attack this puzzle. Well, I first think about 
this. Then I do that. Then I do that, but 
geez, here’s this part I don’t quite 
understand.” For some people that little part 
clicks and for some it doesn’t. And you can do 
fine if it doesn’t click as long as you’ve 
demonstrated the basic competency and 
fluency in how you think about it.”

Abandon all hope ye who enter here?



This class

This class is about learning how to talk about a problem.

Programming languages capture the essential parts of 
problem-solving on a machine.

Dirty secret: most other CS classes are about that too.

Technical Interviews

•Technical interviews are a noisy process at best. 

•Google—and most other tech firms—know this. 

•Do your best to eliminate the noise. 

• If you “fail,” remember to learn from your mistakes and try 

again. 

• “Just do good work.”

Takeaways

Mental Technique #5

“Just do good work.”
• Advice from a favorite professor of mine (David Jensen). 

• You have limited control over what other people think about you. 
• You have a lot of control about what you think about yourself. 

• Set your own standards and make an effort to meet or exceed 

them. 
• Care about your work. 

• This is a “gumption-building” activity. 

• It makes nearly all work seem “worth it” because you’re not just 
doing the work; “the real cycle you’re working on is a cycle 

called ‘yourself.’” 

• People will inevitably notice your positive, can-do attitude.

Type checking & type inference

Finally—cool things enabled 
by the lambda calculus!



Type checking

let f(x:int) : int = “hello” + x

(or, “how does ML know that my expression is wrong?”)

  let f(x:int) : int = "hello" + x;; 
  -------------------------------^ 

stdin(1,32): error FS0001: The type 'int' does not 
match the type 'string'

Type checking

let f(x:int) : int = “hello” + x 

f = λx.“hello ” + x 

f = λx.((+ “hello ”) x)

convert into λ expression

assume + = λx.λy.[[x + y]]

step 1: convert into lambda form

The purpose of this step is to make all of the parts 
of an expression clear

Type checking

f = λx.((+ “hello ”) x) 

f has form λx.((EE)E)

step 2: generate parse tree

λ

@

@

x

x

+ “hello ”

read “:” as “has type”

step 3: label parse tree with types

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int:int

:int → int

:int → int

Type checking



step 4: check that types are used consistently

:int → int → int

λ

@

@

x

x

+ “hello ” :string

:int

:int

:int → int

:int

1. Start at the leaves 

2. Do type mismatches arise? 
Yes = type error 
No = type safe 

3. if yes, stop and 
report first 
mismatch

int → int → int @ string 

YES, TYPE ERROR

:int → int

Type checking Type inference

notice that we had a typed expression

let f(x:int) : int = “hello ” + x

what if, instead, we had

let f x = “hello ” + x

?

Hinley-Milner algorithm

J. Roger Hindley Robin Milner

• Hindley and Milner 
invented algorithm 
independently. 

• Infers types from known 
data types and 
operations used. 

• Depends on a step 
called “unification”. 

• I will demonstrate 
informal method for 
unification; works for 
small examples

Hinley-Milner algorithm

1. Assign known types to each subexpression 

2. Generate type constraints based on rules of λ calculus: 

a. Abstraction constraints 

b. Application constraints 

3. Solve type constraints using unification.

Has three main phases:



Type inference

let f x = 5 + x 

f = λx.((+ 5) x)

step 1: label parse tree with known/unknown types

λ

@

@

x

x

+ 5
:int → int → int

:int

:r :s

:t

:u

:s

I am using the example 
from book so that you 

can follow along at home!

it is often helpful to have types in tabular form

subexpression type

+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r 
s 
t 
u

Type inference

step 2: generate type constraints using λ calculus

Abstraction rule: If the type of x is a and the type of E is b, and the 
type of λx.E is c, then the constraint is c = a → b.

E ::= x 

  |  λx.E 

  |  EE

variable

function application

abstraction

Application rule: If the type of E1 is a and the type of E2 is b, and 
the type of E1E2 is c, then the constraint is a = b → c.

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r 
s 
t 
u

constraint
n/a 
n/a 
int → int → int = int → r 
n/a 
r = s → t 
u = s → t

Type inference



subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r 
s 
t 
u

constraint
n/a 
n/a 
int → int → int = int → r 
n/a 
r = s → t 
u = s → t

step 3: unify

Start with the topmost unknown.  What do we know about r?
int → int → int = int → r 
r = int → int

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s 
t 
u

constraint
n/a 
n/a 
int → int → int = int → r 
n/a 
r = s → t 
u = s → t

step 3: unify

Eliminate r from the constraint.

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s 
t 
u

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = s → t  
u = s → t

step 3: unify

Eliminate r from the constraint.

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s 
t 
u

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = s → t 
u = s → t

step 3: unify

What do we know about s and t?

int → int = s → t 
s = int 
t = int

Type inference



subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s = int 
t = int 
u

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = s → t 
u = s → t

step 3: unify

Eliminate s and t from constraint.

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s = int 
t = int 
u

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = int → int 
u = int → int

step 3: unify

What do we know about u?

u = int → int

Type inference

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s = int 
t = int 
u = int → int

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = int → int 
u = int → int

step 3: unify

Type inference

Eliminate u from constraint.

subexpression type
+ 
5 

(+5) 
x 

(+5)x 
λx.((+ 5) x)

int → int → int 
int 
r = int → int 
s = int 
t = int 
u = int → int

constraint
n/a 
n/a 
int→int→int = int→int→int 
n/a 
int → int = int → int 
int → int = int → int

step 3: unify

Done when there is nothing left to do.

Sometimes unknown types remain.

Type inference

This means that the function is polymorphic. More next class!



Completed type inference

let f x = 5 + x 

f = λx.((+ 5) x)

λ

@

@

x

x

+ 5
:int → int → int

:int

:int → int
:int

:int

:int → int

:int


