
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 22: Recap

Announcements

Announcements

Project due: Sunday, Dec 9 by 10pm

Announcements

Project due: Sunday, Dec 9 by 10pm

Presentation: Tuesday, Dec 11 at 11:20am
in TCL 202

SWELL user testing

https://bit.ly/2EgWKgi

This weekend, 30-40 minutes.

It would be a real help if you have the time!

Topics

Topics

Recap

Topics

Recap

Project Q&A

Recap First, a SPJ video

What did we learn?

Programming languages are for people

A good language makes elegant
algorithms look elegant!

let rec quicksort list =
 match list with
 | [] -> []
 | x::xs ->
 let xs_small =
 xs
 |> List.filter (fun e -> e < x)
 |> quicksort
 let xs_large =
 xs
 |> List.filter (fun e -> e >= x)
 |> quicksort
 xs_small @ [x] @ xs_large

But a good language is more about looks

It’s about being the right tool for the job

But a good language is more about looks

It’s about being the right tool for the job

But a good language is more about looks

It’s about being the right tool for the job

But a good language is more about looks

It’s about being the right tool for the job

Nonetheless, all languages have common parts

e ::= n | e+e | e-e
n ::= d | nd
d ::= 0 | 1 | … | 9

Syntax

Nonetheless, all languages have common parts

e ::= n | e+e | e-e
n ::= d | nd
d ::= 0 | 1 | … | 9

Abstract syntax

λ

@

@

x

x

+ “hello ”

Nonetheless, all languages have common parts

Evaluation rules

let rec eval (e: Expr) : int =
 match e with
 | Number n -> n
 | Plus (e1, e2) -> (eval e1) + (eval e2)
 | Minus(e1, e2) -> (eval e1) - (eval e2)
 | Mult (e1, e2) -> (eval e1) * (eval e2)

With knowledge of a few principles,
we can understand how all languages work

<expr> ::= <var>

 | <abs>  
 | <app>

<var> ::= x  
<abs> ::= λ<var>.<expr>

<app> ::= <expr><expr>
Call stack

main

hello

There are limits to what we can do on a computer

Halt(P,x) = { returns true if P(x) halts

returns false otherwise

But there are also clever workarounds
that approximate the impossible

And using those approximations, we can
abstract away incidental complexity

(define (fizzbuzz x y)
 (println
 (cond ((= (modulo x 15) 0) "FizzBuzz")
 ((= (modulo x 3) 0) "Fizz")
 ((= (modulo x 5) 0) "Buzz")
 (else x)))

 (if (< x y) (fizzbuzz (+ x 1) y)))

Good abstractions let us build complex things simply

Deep Dream

Good abstractions let us build complex things simply

Parsing Expression Grammars (PEGs)

Good abstractions let us build complex things simply One important problem in the real world is scale

Sometimes we need to scale operations Other times it’s about the data

When scaling operations, we use functional approach

type Color =
 | Red = 0
 | Green = 1
 | Blue = 2

let printColorName (color:Color) =
 match color with
 | Color.Red -> printfn "Red"
 | Color.Green -> printfn "Green"
 | Color.Blue -> printfn "Blue"
 | _ -> ()

When scaling data, we use object-orientation

class Person:
 def say_hi(self):
 print('Hello, how are you?')

p = Person()
p.say_hi()

In either model, many tools can help us scale

[<TestClass>]
type TestClass () =

 [<TestMethod>]
 member this.TestMethodPassing() =
 Assert.IsTrue(true)

Tests

In either model, many tools can help us scale

let insertKeepsOrder (x:int) xs =
 ordered xs ==> ordered (insert x xs)

Check.Quick insertKeepsOrder

Randomized testing

In either model, many tools can help us scale

Debuggers

In either model, many tools can help us scale

scala> type AA[-T] = A[A[T]]
<console>:15: error: contravariant type T
occurs in covariant position in type [-
T]A[A[T]] of type AA
 type AA[-T] = A[A[T]]
 ^

Types!

If you want to be a great programmer, take
the time to understand your tools One way to do that is to build lots of stuff!

If it is not impossible, you can build it!

Use your imagination!

With enough practice, you will transcend “coding”

You will become a craftsperson

That is the quality possessed by all of our big thinkers That is the quality possessed by all of our big thinkers

That is the quality possessed by all of our big thinkers That is the quality possessed by all of our big thinkers

That is the quality possessed by all of our big thinkers That is the quality possessed by all of our big thinkers

That is the quality possessed by all of our big thinkers And it is the quality that leads you toward a fulfilling
career in computer science

Good luck on your final project!

I’m sure that you’re going to do great!

Project Q&A

