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How to give a good talk

Project Q&A

SWELL user testing

https://bit.ly/2EgWKgi

This weekend, 30-40 minutes.

It would be a real help if you have the time!
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Refresher: Dynamic Dispatch

c.honk()

• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or 

class).

• A method is called (“dispatched”) by sending a “message” to 

the “selector” of an object.

object selector

message{
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2 honk message dispatched to c

3 honk message forwarded to Car

4 honk message lookup in method dictionary
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5 algorithm recurses on superclass

5
Superclass

no honk method

Question

How expensive is dynamic dispatch?
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What happens when a Java program starts?
1. boot up the Java Virtual Machine (JVM)

a. allocate Java heap, stack, and global var areas
b. start up garbage collector
c. start up Just-in-Time perfmon & compiler (JIT)

2. load first class definition (the one with main)

a. verify bytecode for runtime safety
3. load all class defs for linked code (e.g., stdlib)

a. verify, if necessary
4. allocate space for static variables 
5. initialize static variables
6. execute main

a. repeat loading, linking, verifying, allocation, and initialization 
steps as needed.

b. periodically run the garbage collector
c. run the JIT constantly, in a separate thread
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“Only pay for what you use”

class Math { 
public static average(int[] nums) { 
  int sum = 0; 
  for (int i = 0; i < nums.length; i++) { 
    sum += nums[i]; 
  } 
  return (double sum) / nums.length; 
} 

}

We’re not using any objects!

In C++, the “no class” program is as fast as C

Without classes, C++ is basically C

C++ does OO efficiently
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• Functions without the virtual keyword are just regular C 
functions (that also have access to class instance data).

• C++ virtual dispatch does never searches as in SmallTalk; 
vtable/instance variable offsets known at compile-time.
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break

FordTaurus vtable

Cost
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How to give a good talk
Five tips

1. Have a story

2. Don’t “bury the lede”

The Exciting Parts

2018-2018

“We forgot to tell everyone.”

3. Don’t make your audience read



4. Show by example 5. Stay on script

5.1. Finish on time

Project Q&A


