
CSCI 334:
Principles of Programming Languages

Instructor: Dan Barowy

Lecture 21: OO III & Tech. communication

Topics

Topics

Virtual dispatch

Topics

Virtual dispatch

How to give a good talk

Topics

Virtual dispatch

How to give a good talk

Project Q&A

SWELL user testing

https://bit.ly/2EgWKgi

This weekend, 30-40 minutes.

It would be a real help if you have the time!

Refresher: Dynamic Dispatch Refresher: Dynamic Dispatch

• Dynamic dispatch is the OO mechanism for polymorphism.

Refresher: Dynamic Dispatch

• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or

class).

Refresher: Dynamic Dispatch

• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or

class).

• A method is called (“dispatched”) by sending a “message” to

the “selector” of an object.

Refresher: Dynamic Dispatch

c.honk()

• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or

class).

• A method is called (“dispatched”) by sending a “message” to

the “selector” of an object.

Refresher: Dynamic Dispatch

c.honk()

• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or

class).

• A method is called (“dispatched”) by sending a “message” to

the “selector” of an object.

message{

Refresher: Dynamic Dispatch

c.honk()

• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or

class).

• A method is called (“dispatched”) by sending a “message” to

the “selector” of an object.

object

message{

Refresher: Dynamic Dispatch

c.honk()

• Dynamic dispatch is the OO mechanism for polymorphism.

• Functions (“methods”) are always bound to an object (or

class).

• A method is called (“dispatched”) by sending a “message” to

the “selector” of an object.

object selector

message{
Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

Car object

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class Template

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

Dynamic Dispatch

• Dynamic dispatch is an algorithm for finding an object’s

method corresponding to a given selector name.

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

1 Call c.honk();

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

1 Call c.honk();

2

2 honk message dispatched to c

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

1 Call c.honk();

2

2 honk message dispatched to c

3 honk message forwarded to Car

3

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

1 Call c.honk();

2

2 honk message dispatched to c

3 honk message forwarded to Car

4 honk message lookup in method dictionary

3

4

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

1 Call c.honk();

2

2 honk message dispatched to c

3 honk message forwarded to Car

4 honk message lookup in method dictionary

3

4

5 honk executed.

5

Inheritance

• One small change enables inheritance.

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

Inheritance

• One small change enables inheritance.

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
honk

…

code

Superclass

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
…

Superclass

codehonk

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
…

Superclass

no honk method

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
…

1 Call c.honk();

Superclass

no honk method

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
…

1 Call c.honk();

2

2 honk message dispatched to c

Superclass

no honk method

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
…

1 Call c.honk();

2

2 honk message dispatched to c

3 honk message forwarded to Car

3

Superclass

no honk method

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
…

1 Call c.honk();

2

2 honk message dispatched to c

3 honk message forwarded to Car

4 honk message lookup in method dictionary

3

4

Superclass

no honk method

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

Method dictionary
…

1 Call c.honk();

2

2 honk message dispatched to c

3 honk message forwarded to Car

4 honk message lookup in method dictionary

3

4

5 algorithm recurses on superclass

5
Superclass

no honk method

Question

How expensive is dynamic dispatch?

Cost Cost

1.dereference object

Cost

1.dereference object
2.defererence class

Cost

1.dereference object
2.defererence class
3.dereference method dictionary

Cost

1.dereference object
2.defererence class
3.dereference method dictionary
4.dereference method

1.dereference object
2.defererence class
3.dereference method dictionary
4.dereference method

} for each class
or superclass

Cost

1.dereference object
2.defererence class
3.dereference method dictionary
4.dereference method

} for each class
or superclass

Cost

O(n) method lookup

C++
Efficient object oriented programming.

C++
Efficient object oriented programming.

“Only pay for what you use”

“Only pay for what you use”

“Only pay for what you use”

What does this mean?

“Only pay for what you use”

What does this mean?

In Java, OO & other features are “always on”

“Only pay for what you use”

What does this mean?

In Java, OO & other features are “always on”

Even when they are not needed

“Only pay for what you use”

What does this mean?

In Java, OO & other features are “always on”

class Math {
public static average(int[] nums) {
 int sum = 0;
 for (int i = 0; i < nums.length; i++) {
 sum += nums[i];
 }
 return (double sum) / nums.length;
}

}

Even when they are not needed

What happens when a Java program starts? What happens when a Java program starts?
1. boot up the Java Virtual Machine (JVM)

What happens when a Java program starts?
1. boot up the Java Virtual Machine (JVM)

a. allocate Java heap, stack, and global var areas

What happens when a Java program starts?
1. boot up the Java Virtual Machine (JVM)

a. allocate Java heap, stack, and global var areas
b. start up garbage collector

What happens when a Java program starts?
1. boot up the Java Virtual Machine (JVM)

a. allocate Java heap, stack, and global var areas
b. start up garbage collector
c. start up Just-in-Time perfmon & compiler (JIT)

What happens when a Java program starts?
1. boot up the Java Virtual Machine (JVM)

a. allocate Java heap, stack, and global var areas
b. start up garbage collector
c. start up Just-in-Time perfmon & compiler (JIT)

2. load first class definition (the one with main)

What happens when a Java program starts?
1. boot up the Java Virtual Machine (JVM)

a. allocate Java heap, stack, and global var areas
b. start up garbage collector
c. start up Just-in-Time perfmon & compiler (JIT)

2. load first class definition (the one with main)

a. verify bytecode for runtime safety

What happens when a Java program starts?
1. boot up the Java Virtual Machine (JVM)

a. allocate Java heap, stack, and global var areas
b. start up garbage collector
c. start up Just-in-Time perfmon & compiler (JIT)

2. load first class definition (the one with main)

a. verify bytecode for runtime safety
3. load all class defs for linked code (e.g., stdlib)

What happens when a Java program starts?
1. boot up the Java Virtual Machine (JVM)

a. allocate Java heap, stack, and global var areas
b. start up garbage collector
c. start up Just-in-Time perfmon & compiler (JIT)

2. load first class definition (the one with main)

a. verify bytecode for runtime safety
3. load all class defs for linked code (e.g., stdlib)

a. verify, if necessary

What happens when a Java program starts?
1. boot up the Java Virtual Machine (JVM)

a. allocate Java heap, stack, and global var areas
b. start up garbage collector
c. start up Just-in-Time perfmon & compiler (JIT)

2. load first class definition (the one with main)

a. verify bytecode for runtime safety
3. load all class defs for linked code (e.g., stdlib)

a. verify, if necessary
4. allocate space for static variables

What happens when a Java program starts?
1. boot up the Java Virtual Machine (JVM)

a. allocate Java heap, stack, and global var areas
b. start up garbage collector
c. start up Just-in-Time perfmon & compiler (JIT)

2. load first class definition (the one with main)

a. verify bytecode for runtime safety
3. load all class defs for linked code (e.g., stdlib)

a. verify, if necessary
4. allocate space for static variables
5. initialize static variables

What happens when a Java program starts?
1. boot up the Java Virtual Machine (JVM)

a. allocate Java heap, stack, and global var areas
b. start up garbage collector
c. start up Just-in-Time perfmon & compiler (JIT)

2. load first class definition (the one with main)

a. verify bytecode for runtime safety
3. load all class defs for linked code (e.g., stdlib)

a. verify, if necessary
4. allocate space for static variables
5. initialize static variables
6. execute main

What happens when a Java program starts?
1. boot up the Java Virtual Machine (JVM)

a. allocate Java heap, stack, and global var areas
b. start up garbage collector
c. start up Just-in-Time perfmon & compiler (JIT)

2. load first class definition (the one with main)

a. verify bytecode for runtime safety
3. load all class defs for linked code (e.g., stdlib)

a. verify, if necessary
4. allocate space for static variables
5. initialize static variables
6. execute main

a. repeat loading, linking, verifying, allocation, and initialization
steps as needed.

What happens when a Java program starts?
1. boot up the Java Virtual Machine (JVM)

a. allocate Java heap, stack, and global var areas
b. start up garbage collector
c. start up Just-in-Time perfmon & compiler (JIT)

2. load first class definition (the one with main)

a. verify bytecode for runtime safety
3. load all class defs for linked code (e.g., stdlib)

a. verify, if necessary
4. allocate space for static variables
5. initialize static variables
6. execute main

a. repeat loading, linking, verifying, allocation, and initialization
steps as needed.

b. periodically run the garbage collector

What happens when a Java program starts?
1. boot up the Java Virtual Machine (JVM)

a. allocate Java heap, stack, and global var areas
b. start up garbage collector
c. start up Just-in-Time perfmon & compiler (JIT)

2. load first class definition (the one with main)

a. verify bytecode for runtime safety
3. load all class defs for linked code (e.g., stdlib)

a. verify, if necessary
4. allocate space for static variables
5. initialize static variables
6. execute main

a. repeat loading, linking, verifying, allocation, and initialization
steps as needed.

b. periodically run the garbage collector
c. run the JIT constantly, in a separate thread

“Only pay for what you use”

“Only pay for what you use”

class Math {
public static average(int[] nums) {
 int sum = 0;
 for (int i = 0; i < nums.length; i++) {
 sum += nums[i];
 }
 return (double sum) / nums.length;
}

}

“Only pay for what you use”

class Math {
public static average(int[] nums) {
 int sum = 0;
 for (int i = 0; i < nums.length; i++) {
 sum += nums[i];
 }
 return (double sum) / nums.length;
}

}

We’re not using any objects!

“Only pay for what you use”

class Math {
public static average(int[] nums) {
 int sum = 0;
 for (int i = 0; i < nums.length; i++) {
 sum += nums[i];
 }
 return (double sum) / nums.length;
}

}

We’re not using any objects!

In C++, the “no class” program is as fast as C

“Only pay for what you use”

class Math {
public static average(int[] nums) {
 int sum = 0;
 for (int i = 0; i < nums.length; i++) {
 sum += nums[i];
 }
 return (double sum) / nums.length;
}

}

We’re not using any objects!

In C++, the “no class” program is as fast as C

Without classes, C++ is basically C

C++ does OO efficiently

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

code
Method dictionary

honk

…

Superclass

C++ does OO efficiently

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

code
Method dictionary

honk

…

Superclass

C++ static methods are just C procedures. No classes needed.

C++ does OO efficiently

color

cost

topSpeed

Car object Car class Template

color

cost

topSpeed

code
Method dictionary

honk

…

Superclass

C++ eliminates lookups by computing locations at compile-time.

C++ static methods are just C procedures. No classes needed.

C++ does OO efficiently

color

cost

topSpeed

Car object Car class

code
Method dictionary

honk

…

Superclass

C++ eliminates lookups by computing locations at compile-time.

C++ static methods are just C procedures. No classes needed.

C++ does OO efficiently

color

cost

topSpeed

Car object Car class

code

Superclass

C++ eliminates lookups by computing locations at compile-time.

C++ static methods are just C procedures. No classes needed.

C++ does OO efficiently

color

cost

topSpeed

Car object Car class

code

Superclass

C++ eliminates lookups by computing locations at compile-time.

C++ also copies any needed superclass method pointers into class

C++ static methods are just C procedures. No classes needed.

C++ does OO efficiently

color

cost

topSpeed

Car object Car class

code

C++ eliminates lookups by computing locations at compile-time.

C++ also copies any needed superclass method pointers into class

C++ static methods are just C procedures. No classes needed.

Virtual Dispatch

Virtual Dispatch
Car object

Virtual Dispatch
Car object

vptr

color

cost

topSpeed

Virtual Dispatch
Car object

vptr

color

cost

topSpeed

Car vtable

Virtual Dispatch
Car object

vptr

color

cost

topSpeed

Car vtable

honk

Virtual Dispatch
Car object

vptr

color

cost

topSpeed

Car vtable

honk

Car code

Virtual Dispatch
Car object

vptr

color

cost

topSpeed

Car vtable

honk

Car code

Virtual Dispatch
Car object

vptr

color

cost

topSpeed

Car vtable

honk

• Functions without the virtual keyword are just regular C
functions (that also have access to class instance data).

Car code

Virtual Dispatch
Car object

vptr

color

cost

topSpeed

Car vtable

honk

• Functions without the virtual keyword are just regular C
functions (that also have access to class instance data).

• C++ virtual dispatch does never searches as in SmallTalk;
vtable/instance variable offsets known at compile-time.

Car code

Virtual Dispatch
Car object

vptr

color

cost

topSpeed

Car vtable

honk

Car code

FordTaurus object

vptr

color

cost

topSpeed

rust

FordTaurus code

honk

break

FordTaurus vtable

Cost

Cost

1.dereference object

Cost

1.dereference object
2.defererence class

Cost

1.dereference object
2.defererence class
3.dereference method dictionary

Cost

1.dereference object
2.defererence class
3.dereference method dictionary

Cost

1.dereference object
2.defererence class
3.dereference method dictionary } for each class

or superclass

Cost

1.dereference object
2.defererence class
3.dereference method dictionary } for each class

or superclass

Cost

1.dereference object
2.defererence class
3.dereference method dictionary
4.dereference method

} for each class
or superclass

Cost

1.dereference object
2.defererence class
3.dereference method dictionary
4.dereference method

O(1) method lookup

} for each class
or superclass

How to give a good talk
Five tips

1. Have a story

2. Don’t “bury the lede”

The Exciting Parts

2018-2018

“We forgot to tell everyone.”

3. Don’t make your audience read

4. Show by example 5. Stay on script

5.1. Finish on time

Project Q&A

